March 19, 2004 10:27 Proceedings of ASME/JSME Symposium 2004 5th International Bi-Annual ASME/JSME Symposium on computational technology for fluid / thermal / chemical / stressed systems with industrial applications San Diego / La Jolla, California, USA, July 25-29, 2004 DIRECT NUMERICAL SIMULATION AND RANS MODELING OF TURBULENT NATURAL CONVECTION FOR LOW PRANDTL NUMBER FLUIDS I. Otic´ G. Grotzbac¨ h Institute for Nuclear and Energy Technologies Institute for Nuclear and Energy Technologies Forschungszentrum Karlsruhe Forschungszentrum Karlsruhe 76021 Karlsruhe, Germany 76021 Karlsruhe, Germany Email:
[email protected] Email:
[email protected] ABSTRACT Prt Turbulent Prandtl number. gβ∆TD3 Results of direct numerical simulation (DNS) of turbulent Ra Rayleigh number, Ra ¡ νκ . ¢ Rayleigh-Benar´ d convection for a Prandtl number Pr ¡ 0 025 p Pressure. 5 and a Rayleigh number Ra ¡ 10 are used to evaluate the turbu- t Time. lent heat flux and the temperature variance. The DNS evaluated T Temperature. turbulent heat flux is compared with the DNS based results of a ∆T Temperature difference. standard gradient diffusion turbulent heat flux model and with ui Velocity in i- direction. ¤ 1 ¦ 2 the DNS based results of a standard algebraic turbulent heat flux u0 Velocity scale, gβ∆TD ¥ . model. The influence of the turbulence time scales on the predic- ¤ § ¥ Xi Coordinates in horizontal i ¡ 1 2 tions by the standard algebraic heat flux model at these Rayleigh- ¤ ¥ and vertical i ¡ 3 directions. and Prandtl numbers is investigated. A four equation algebraic Greek turbulent heat flux model based on the transport equations for β Thermal expansion coefficient. the turbulent kinetic energy k, for the dissipation of the turbu- ∆x Laplace operator.