On Dimensionless Numbers

Total Page:16

File Type:pdf, Size:1020Kb

On Dimensionless Numbers chemical engineering research and design 8 6 (2008) 835–868 Contents lists available at ScienceDirect Chemical Engineering Research and Design journal homepage: www.elsevier.com/locate/cherd Review On dimensionless numbers M.C. Ruzicka ∗ Department of Multiphase Reactors, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojova 135, 16502 Prague, Czech Republic This contribution is dedicated to Kamil Admiral´ Wichterle, a professor of chemical engineering, who admitted to feel a bit lost in the jungle of the dimensionless numbers, in our seminar at “Za Plıhalovic´ ohradou” abstract The goal is to provide a little review on dimensionless numbers, commonly encountered in chemical engineering. Both their sources are considered: dimensional analysis and scaling of governing equations with boundary con- ditions. The numbers produced by scaling of equation are presented for transport of momentum, heat and mass. Momentum transport is considered in both single-phase and multi-phase flows. The numbers obtained are assigned the physical meaning, and their mutual relations are highlighted. Certain drawbacks of building correlations based on dimensionless numbers are pointed out. © 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. Keywords: Dimensionless numbers; Dimensional analysis; Scaling of equations; Scaling of boundary conditions; Single-phase flow; Multi-phase flow; Correlations Contents 1. Introduction .................................................................................................................. 836 2. Two sources of dimensionless numbers .................................................................................... 836 2.1. Source one—dimensional analysis .................................................................................. 836 2.2. Source two—scaling of equations ................................................................................... 837 3. Dimensional analysis ....................................................................................................... 838 3.1. How DA works......................................................................................................... 838 3.2. Comments on DA ..................................................................................................... 839 3.2.1. Choice of variables ........................................................................................... 839 3.2.2. Variables with independent dimensions.................................................................... 840 3.2.3. Similarity and modelling .................................................................................... 840 3.2.4. Neglecting variables in DA ................................................................................... 841 3.2.5. Limits of DA .................................................................................................. 841 3.2.6. DA versus SE.................................................................................................. 841 4. Scaling of equations ......................................................................................................... 841 5. Transport of momentum .................................................................................................... 841 5.1. Mass equation of fluid ................................................................................................ 842 5.2. Momentum equation of fluid ......................................................................................... 842 5.3. Energy equation of fluid .............................................................................................. 844 5.4. Boundary conditions: no slip and free-slip .......................................................................... 845 5.4.1. Normal component of free-slip BC .......................................................................... 845 5.4.2. Tangential component of free-slip BC ...................................................................... 845 ∗ Tel.: +420 220 390 299; fax: +420 220 920 661. E-mail address: [email protected]. Received 19 June 2007; Accepted 2 March 2008 0263-8762/$ – see front matter © 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.cherd.2008.03.007 836 chemical engineering research and design 8 6 (2008) 835–868 5.5. Multi-phase flow ...................................................................................................... 847 5.5.1. Microscale description ...................................................................................... 847 5.5.2. Mesoscale description (Euler/Lagrange)..................................................................... 848 5.5.3. Macroscale description (Euler/Euler) ........................................................................ 849 5.5.4. Retention time distribution.................................................................................. 850 6. Transport of heat ............................................................................................................. 852 7. Transport of mass ............................................................................................................ 853 8. Correlations .................................................................................................................. 854 9. Remark on literature ......................................................................................................... 857 10. Conclusions ................................................................................................................. 859 Acknowledgements .......................................................................................................... 859 Appendix A. Concept of intermediate asymptotics ........................................................................... 859 A.1. Motivation example .................................................................................................. 859 A.2. Two kinds of similarity ............................................................................................... 859 A.2.1. Complete similarity ......................................................................................... 859 A.2.2. Incomplete similarity........................................................................................ 860 A.3. Two kinds of self-similarity .......................................................................................... 860 A.4. Relation between DA and IA ......................................................................................... 861 A.5. Beyond IA? ............................................................................................................ 861 A.6. Broader horizons ..................................................................................................... 862 Appendix B. Suggestions for using and teaching DA.......................................................................... 863 Appendix C. New areas in chemical engineering ............................................................................. 864 C.1. Microreactors and microfluidics ..................................................................................... 864 C.1.1. Microsystems in chemical technology ...................................................................... 864 C.1.2. Prevailing forces ............................................................................................. 864 C.1.3. Governing equations and boundary conditions ............................................................ 864 C.2. Biosystems ............................................................................................................ 865 C.3. Multiscale methodology .............................................................................................. 865 1. Introduction 2. Two sources of dimensionless numbers (DN) I have always been puzzled with the plethora of dimensionless numbers (DN) occurring in the various branches of chemi- 2.1. Source one—dimensional analysis (DA) cal engineering. From sincere discussions with my peers as well as with students an impression has arose that I am not A general way how to formally describe the surrounding world the only puzzled person in this field. Consequently, the main consists of several steps. First, for the thing under study motivation of this contribution is to try to briefly review DN (‘system’), define all possible qualities of interest. Second, commonly encountered at the transport of momentum, heat, select those qualities that can be quantified, i.e. their amount and mass, as for their origin, physical meaning, interrelation in the thing can be expressed by numbers, or some other and relevance for making correlations. The selection of DN mathematical constructs. Call these measurables the phys- is neither objective nor exhaustive, being biased by working ical quantities. Choose the etalons (measuring sticks, units) mainly in the area of the multi-phase hydrodynamics. to measure each of them. Each physical quantity has four The dimensionless (nondimensional) numbers (criteria, attributes: name, notation, defining relation, and physical unit groups, products, quantities, ratios, terms) posses the follow- that determine its physical dimension (unit and dimension are ing features. They are algebraic expressions, namely fractions, often used interchangeably). The first two are only our
Recommended publications
  • Convection Heat Transfer
    Convection Heat Transfer Heat transfer from a solid to the surrounding fluid Consider fluid motion Recall flow of water in a pipe Thermal Boundary Layer • A temperature profile similar to velocity profile. Temperature of pipe surface is kept constant. At the end of the thermal entry region, the boundary layer extends to the center of the pipe. Therefore, two boundary layers: hydrodynamic boundary layer and a thermal boundary layer. Analytical treatment is beyond the scope of this course. Instead we will use an empirical approach. Drawback of empirical approach: need to collect large amount of data. Reynolds Number: Nusselt Number: it is the dimensionless form of convective heat transfer coefficient. Consider a layer of fluid as shown If the fluid is stationary, then And Dividing Replacing l with a more general term for dimension, called the characteristic dimension, dc, we get hd N ≡ c Nu k Nusselt number is the enhancement in the rate of heat transfer caused by convection over the conduction mode. If NNu =1, then there is no improvement of heat transfer by convection over conduction. On the other hand, if NNu =10, then rate of convective heat transfer is 10 times the rate of heat transfer if the fluid was stagnant. Prandtl Number: It describes the thickness of the hydrodynamic boundary layer compared with the thermal boundary layer. It is the ratio between the molecular diffusivity of momentum to the molecular diffusivity of heat. kinematic viscosity υ N == Pr thermal diffusivity α μcp N = Pr k If NPr =1 then the thickness of the hydrodynamic and thermal boundary layers will be the same.
    [Show full text]
  • The Influence of Magnetic Fields in Planetary Dynamo Models
    Earth and Planetary Science Letters 333–334 (2012) 9–20 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The influence of magnetic fields in planetary dynamo models Krista M. Soderlund a,n, Eric M. King b, Jonathan M. Aurnou a a Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA article info abstract Article history: The magnetic fields of planets and stars are thought to play an important role in the fluid motions Received 7 November 2011 responsible for their field generation, as magnetic energy is ultimately derived from kinetic energy. We Received in revised form investigate the influence of magnetic fields on convective dynamo models by contrasting them with 27 March 2012 non-magnetic, but otherwise identical, simulations. This survey considers models with Prandtl number Accepted 29 March 2012 Pr¼1; magnetic Prandtl numbers up to Pm¼5; Ekman numbers in the range 10À3 ZEZ10À5; and Editor: T. Spohn Rayleigh numbers from near onset to more than 1000 times critical. Two major points are addressed in this letter. First, we find that the characteristics of convection, Keywords: including convective flow structures and speeds as well as heat transfer efficiency, are not strongly core convection affected by the presence of magnetic fields in most of our models. While Lorentz forces must alter the geodynamo flow to limit the amplitude of magnetic field growth, we find that dynamo action does not necessitate a planetary dynamos dynamo models significant change to the overall flow field.
    [Show full text]
  • Laws of Similarity in Fluid Mechanics 21
    Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists.
    [Show full text]
  • Collisional Granular Flows with and Without Gas Interactions in Microgravity
    COLLISIONAL GRANULAR FLOWS WITH AND WITHOUT GAS INTERACTIONS IN MICROGRAVITY A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Haitao Xu August 2003 c 2003 Haitao Xu ° ALL RIGHTS RESERVED COLLISIONAL GRANULAR FLOWS WITH AND WITHOUT GAS INTERACTIONS IN MICROGRAVITY Haitao Xu, Ph.D. Cornell University 2003 We studied flows of agitated spherical grains in a gas. When the grains have large enough inertia and when collisions constitute the dominant mechanism for momentum transfer among them, the particle velocity distribution is determined by collisional rather than by hydrodynamic interactions, and the granular flow is governed by equations derived from the kinetic theory. To solve these equations, we determined boundary conditions for agitated grains at solid walls of practical interest by considering the change of momentum and fluctuation energy of the grains in collisions with the wall. Using these condi- tions, solutions of the governing equations captured granular flows in microgravity experiments and in event-driven simulations. We extended the theory to gas-particle flows with moderately large grain in- ertia, in which the viscous gas introduces an additional dissipation mechanism of particle fluctuation energy. When there is also a mean relative velocity between the gas and the particles, the gas gives rise to particle fluctuation energy and to mean drag. Solutions of the resulting equations compared well with Lattice- Boltzmann simulations at large to moderate Stokes numbers. However, theoretical predictions deviated from simulations at small Stokes number or at large particle Reynolds number.
    [Show full text]
  • Static Mixing Spacers for Spiral Wound Modules
    Desalination and Water Purification Research and Development Program Report No. 161 Static Mixing Spacers for Spiral Wound Modules U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado November 2012 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) November 2012 Final 2010-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Static Mixing Spacers for Spiral Wound Modules Agreement No.R10AP81213 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Glenn Lipscomb 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Chemical Engineering Task Identification Number University of Toledo Task IV: Expanding Scientific 3048 Nitschke Hall (MS 305) Understanding of Desalination Processes 1610 N Westwood Ave Subtask: Increase of rates of mass transfer Toledo, OH 43607 to membrane or to heat transfer surfaces.
    [Show full text]
  • Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation
    7. HEAT TRANSFER SPRING 2009 7.1 Definitions 7.2 Modes of heat transfer 7.3 The Prandtl number 7.4 Dimensionless numbers in free and forced convection 7.5 The energy equation 7.6 Laminar boundary layers with isothermal walls 7.7 Temperature profile in a turbulent boundary layer 7.8 Heat-transfer coefficients 7.9 Temperature integral results 7.10 Engineering heat-transfer calculations 7.11 References Examples 7.1 Definitions Heat transfer is energy in transit due to a temperature difference. The heat flux qh is the rate of heat transfer per unit area. 7.2 Modes of Heat Transfer 7.2.1 Conduction Heat transfer due to molecular activity in the absence of a bulk motion. Fourier ’s Law = − ∇ qh kh T (1) kh is the conductivity of heat . –1 –1 –1 –1 At 20 ºC, kh(water) = 0.604 W m K ; kh(air) = 0.0257 W m K . 7.2.2 Advection Heat transfer due to bulk motion of fluid. = − qh c p (T Te )u (2) cp is the specific heat capacity (at constant pressure). Te is a reference (usually the external or free-stream) temperature. –1 –1 –1 –1 At 20 ºC, cp(water) = 4182 J kg K ; cp(air) = 1007 J kg K . Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation Heat transfer by emission of electromagnetic radiation. Stefan-Boltzmann Law = 4 qh Ts (3) (= 5.670 ×10 -8 W m–2 K–4) is the Stefan-Boltzmann constant . is the emissivity ( = 1 for a perfect black body) 7.2.4 Free and Forced Convection For fluids, conduction and advection are usually combined as convection , which may be either: forced convection – flow driven by external means; free (or natural ) convection – flow driven by buoyancy.
    [Show full text]
  • Experimental Heat Transfer and Friction Factor of Fe3o4 Magnetic Nanofluids Flow in a Tube Under Laminar Flow at High Prandtl Numbers
    International Journal of Heat and Technology Vol. 38, No. 2, June, 2020, pp. 301-313 Journal homepage: http://iieta.org/journals/ijht Experimental Heat Transfer and Friction Factor of Fe3O4 Magnetic Nanofluids Flow in a Tube under Laminar Flow at High Prandtl Numbers Lingala Syam Sundar1*, Hailu Misganaw Abebaw2, Manoj K. Singh3, António M.B. Pereira1, António C.M. Sousa1 1 Centre for Mechanical Technology and Automation (TEMA–UA), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-131, Portugal 2 Department of Mechanical Engineering, University of Gondar, Gondar, Ethiopia 3 Department of Physics – School of Engineering and Technology (SOET), Central University of Haryana, Haryana 123031, India Corresponding Author Email: [email protected] https://doi.org/10.18280/ijht.380204 ABSTRACT Received: 15 February 2020 The work is focused on the estimation of convective heat transfer and friction factor of Accepted: 23 April 2020 vacuum pump oil/Fe3O4 magnetic nanofluids flow in a tube under laminar flow at high Prandtl numbers experimentally. The thermophysical properties also studied Keywords: experimentally at different particle concentrations and temperatures. The Fe3O4 heat transfer enhancement, friction factor, nanoparticles were synthesized using the chemical reaction method and characterized using laminar flow, high Prandtl number, magnetic X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. nanofluid The experiments were conducted at mass flow rate from 0.04 kg/s to 0.208 kg/s, volume concentration from 0.05% to 0.5%, Prandtl numbers from 440 to 2534 and Graetz numbers from 500 to 3000. The results reveal that, the thermal conductivity and viscosity enhancements are 9% and 1.75-times for 0.5 vol.
    [Show full text]
  • A Two-Layer Turbulence Model for Simulating Indoor Airflow Part I
    Energy and Buildings 33 +2001) 613±625 A two-layer turbulence model for simulating indoor air¯ow Part I. Model development Weiran Xu, Qingyan Chen* Department of Architecture, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139, USA Received 2 August 2000; accepted 7 October 2000 Abstract Energy ef®cient buildings should provide a thermally comfortable and healthy indoor environment. Most indoor air¯ows involve combined forced and natural convection +mixed convection). In order to simulate the ¯ows accurately and ef®ciently, this paper proposes a two-layer turbulence model for predicting forced, natural and mixed convection. The model combines a near-wall one-equation model [J. Fluid Eng. 115 +1993) 196] and a near-wall natural convection model [Int. J. Heat Mass Transfer 41 +1998) 3161] with the aid of direct numerical simulation +DNS) data [Int. J. Heat Fluid Flow 18 +1997) 88]. # 2001 Published by Elsevier Science B.V. Keywords: Two-layer turbulence model; Low-Reynolds-number +LRN); k±e Model +KEM) 1. Introduction This paper presents a new two-layer turbulence model that performs two tasks: 1.1. Objectives 1. It can accurately predict flows under various conditions, i.e. from purely forced to purely natural convection. This Energy ef®cient buildings should provide a thermally model allows building ventilation designers to use one comfortable and healthy indoor environment. The comfort single model to calculate flows instead of selecting and health parameters in indoor environment include the different turbulence models empirically from many distributions of velocity, air temperature, relative humidity, available models. and contaminant concentrations. These parameters can be 2.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • An Investigation Into the Effects of Viscoelasticity on Cavitation Bubble Dynamics with Applications to Biomedicine
    An Investigation into the Effects of Viscoelasticity on Cavitation Bubble Dynamics with Applications to Biomedicine Michael Jason Walters School of Mathematics Cardiff University A thesis submitted for the degree of Doctor of Philosophy 9th April 2015 Summary In this thesis, the dynamics of microbubbles in viscoelastic fluids are investigated nu- merically. By neglecting the bulk viscosity of the fluid, the viscoelastic effects can be introduced through a boundary condition at the bubble surface thus alleviating the need to calculate stresses within the fluid. Assuming the surrounding fluid is incompressible and irrotational, the Rayleigh-Plesset equation is solved to give the motion of a spherically symmetric bubble. For a freely oscillating spherical bubble, the fluid viscosity is shown to dampen oscillations for both a linear Jeffreys and an Oldroyd-B fluid. This model is also modified to consider a spherical encapsulated microbubble (EMB). The fluid rheology affects an EMB in a similar manner to a cavitation bubble, albeit on a smaller scale. To model a cavity near a rigid wall, a new, non-singular formulation of the boundary element method is presented. The non-singular formulation is shown to be significantly more stable than the standard formulation. It is found that the fluid rheology often inhibits the formation of a liquid jet but that the dynamics are governed by a compe- tition between viscous, elastic and inertial forces as well as surface tension. Interesting behaviour such as cusping is observed in some cases. The non-singular boundary element method is also extended to model the bubble tran- sitioning to a toroidal form.
    [Show full text]
  • Effect of Dean Number on Heating Transfer Coefficients in an Flat Bottom Agitated Vessel
    IOSR Journal of Engineering May. 2012, Vol. 2(5) pp: 945-951 Effect of Dean Number on Heating Transfer Coefficients in an Flat Bottom Agitated Vessel 1*Ashok Reddy K 2 Bhagvanth Rao M 3 Ram Reddy P 1*..Professor Dept. of Mechanical Engineering ,Prof Rama Reddy College of Engineering & Technology Nandigoan(V) Pantacheru(M) Greater Hyderabad A P 2. Director CVSR College of Engineering Ghatkesar(M) R R Dist A P 3 .Director Malla Reddy College of Engineering Hyderbad A P ABSTRACT Experimental work has been reviewed using non- Newtonian and Newtonian fluids like Sodium Carboxymethal Cellulose with varying concentrations 0.05%,0.1%,0.15% and 0.2% with two different lengths (L=2.82m,L=2.362m) and outer diameter do=6.4mm,inner diameter di=4.0mm in an mixing vessel completely submerged helical coil. In our present study, the effect impeller speed, discharge ,flow behavior index(n) and consistency index (K) of test fluids with dimensionless curvature of the helical coil based on characteristic diameter were presented.. Keywords: Dean Number, Curvature, Heating Rates, Agitated Vessel I. Introduction To improve the performance of heat transfer rates, the fundamental aspect of flow patterns is an essential and important criteria in the helical coil design theory. The helical coil silent features consists of a inner diameter di and mean coil diameter Dm which is also known as pitch circle diameter of the coil. The ratio of coil pipe diameter to the mean coil diameter is known as dimensionless curvature .The ratio of pitch of the helical coil to the developed length of one turn is called non dimensional pitch .The angle which makes with plane geometry perpendicular to the axis of the one turn of the coil dimensions ic defined as helix angle.
    [Show full text]
  • Rotating Fluids
    26 Rotating fluids The conductor of a carousel knows about fictitious forces. Moving from horse to horse while collecting tickets, he not only has to fight the centrifugal force trying to kick him off, but also has to deal with the dizzying sideways Coriolis force. On a typical carousel with a five meter radius and turning once every six seconds, the centrifugal force is strongest at the rim where it amounts to about 50% of gravity. Walking across the carousel at a normal speed of one meter per second, the conductor experiences a Coriolis force of about 20% of gravity. Provided the carousel turns anticlockwise seen from above, as most carousels seem to do, the Coriolis force always pulls the conductor off his course to the right. The conductor seems to prefer to move from horse to horse against the rotation, and this is quite understandable, since the Coriolis force then counteracts the centrifugal force. The whole world is a carousel, and not only in the metaphorical sense. The centrifugal force on Earth acts like a cylindrical antigravity field, reducing gravity at the equator by 0.3%. This is hardly a worry, unless you have to adjust Olympic records for geographic latitude. The Coriolis force is even less noticeable at Olympic speeds. You have to move as fast as a jet aircraft for it to amount to 0.3% of a percent of gravity. Weather systems and sea currents are so huge and move so slowly compared to Earth’s local rotation speed that the weak Coriolis force can become a major player in their dynamics.
    [Show full text]