Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres

Total Page:16

File Type:pdf, Size:1020Kb

Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres DATE DUE llbriZl<L. - ' :_ Demco, Inc. 38-293 National Bureau of Standards A UNITED STATES H1 DEPARTMENT OF v+ *^r COMMERCE NBS TECHNICAL NOTE 631 National Bureau of Standards PUBLICATION APR 2 1973 Library, E-Ol Admin. Bldg. OCT 6 1981 191103 Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures qc to 1000 Atmospheres joo U57Q lV-O/ U.S. >EPARTMENT OF COMMERCE National Bureau of Standards NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2 —Quantum Electronics3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics 3—Cryo- 3 genics . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead- ing to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute con- sists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor Radiation—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to pro- mote the use of available technology and to facilitate technological innovation in indus- try and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of a Center for Building Technology and the following divisions and offices: Engineering Standards Services—Weights and Measures—Invention and Inno- vation—Product Evaluation Technology—Electronic Technology—Technical Analysis—Measurement Engineering—Fire Technology—Housing Technology 4 —Federal Building Technology 4—Building Standards and Codes Services 4— Building Environment 4—Structures, Materials and Life Safety 4—Technical 4 Evaluation and Application . THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts re- search and provides technical services designed to aid Government agencies in improv- ing cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the prin- cipal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions: Information Processing Standards—Computer Information—Computer Services —Systems Development—Information Processing Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units: Office of Standard Reference Data—Office of Technical Information and Publications—Library—Office of International Relations. 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted ; mailing address Washington, D.C. 20234. ' Part of the Center for Radiation Research. 3 Located at Boulder, Colorado 80302. 4 Part of the Center for Building Technology. Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres R.D. McCarty Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302 NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. Sf *"/ 4T£S Of U.S. DEPARTMENT OF COMMERCE, Peter G. Peterson, Secretary NATIONAL BUREAU OF STANDARDS, Lawrence M. Kushner, Acting Director Issued November 1972 National Bureau of Standards Technical Note 631 Nat. Bur. Stand. (U.S.), Tech. Note 631, 161 pages (November 1972) CODEN:NBTNAE For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.46:631.) Contents Page 1 . Introduction 1 2. Thermodynamic and Related Properties 1 2. 1 PVT Surface 1 2.2 Derived Thermodynamic Properties 3 2. 3 Related Properties 3 2.4 Heat Capacities 3 3. Transport Properties 4 3.1 Thermal Conductivity, 300 K and Below 4 3.2 Thermal Conductivity, 300 K and Above 5 3.3 Viscosity Below 100 K 9 3.4 Viscosity Between 100 and 300 K 10 3. 5 Viscosity for Temperatures Above 300 K .... 10 4. Surface Tension 11 Dielectric Constant 11 Index of Refraction 13 Thermal Diffusivity 16 Prandtl Number 16 Joule-Thomson Inversion Curve 16 The Melting Line 19 The Lambda Line 20 Summary 20 Bibliography 21 Appendix A, List of Symbols and Units 23 Appendix B, Fixed Points 24 Appendix C, Conversion Factors 24 Appendix D, Saturation Properties 26 Appendix E, Isobaric Properties 30 List of Tables Page Table 1. Uncertainties in the PVT Data 1 2. Index of Refraction of Saturated Liquid Helium at Three Wavelengths 14 3. Joule- Thomson Inversion Curve 17 4. Melting Line for Helium-4 19 5. PpT of the Lambda Line 20 List of Figures Figure 1. Range of PT Covered 2 2. PVT Range of Experimental Data for Thermal Conductivity 6 3. Deviations between Calculated Thermal Conductivity and Data by Kerrisk (1968) 7 4. Deviations between Calculated Thermal Conductivities and Data by Golubev and Shpagina (1966) . 8 5. Deviations between Calculated and Experimental Surface Tension Data 12 6. Index of Refraction for Saturated Liquid and Gaseous Helium. Points are from Edwards (1957,1958) ... 15 7. Joule- Thomson Inversion Curve 18 THERMOPHYSICAL PROPERTIES OF HELIUM-4 FROM 2 TO 1500 K WITH PRESSURES TO 1000 ATMOSPHERES" Robert D. McCarty Tables of thermophysical properties of helium 4 are presented for temperatures from 2 to 1500 K for pressures to 1000 atmospheres. The tables include, entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal con- ductivity, viscosity, thermal diffusivity, Prandtl number and the dielectric constant for 62 isobars. Also included in the isobaric tables are quantities of special utility in heat transfer calculations: OP/dV) , feP/aT) , V(dH/dV) , VOP/&U) , -V( P/oV) , 1/VOV/3T) . In addition to the isobaric tables, tables for the saturated vapor and liquid are given which include all of the above properties, plus the surface tension. Tables for the PpT of the freezing liquid, PpT of the lambda line, index of refraction and the derived Joule-Thomson inversion curve are also presented. A computer program to calculate the various properties is also available. Inquiries should be addressed to the National Bureau of Standards, Cryogenic Data Center, Boulder, Colorado 80302. Key Words: Density; dielectric constant; enthalpy; entropy; equation of state; fixed points; heat transfer coefficients; helium 4; index of refraction; Joule-Thomson coefficient; lambda line; latent heat; melting point; Prandtl number; specific heats; speed of sound; surface tension; thermal conductivity; thermal diffusivity; vapor pressure; viscosity; volume. * This work carried out at the National Bureau of Standards, supported by NASA-MSC Contract T-1813A, and DOC/NBS Presidential Initiative Program in Cryogenics for the Electrical Industry. 1. Introduction The purpose of this document is to assemble data on many of the properties of helium commonly used in engineering calculations over as wide a temperature and pressure range as is practical, and present these properties in a form
Recommended publications
  • Convection Heat Transfer
    Convection Heat Transfer Heat transfer from a solid to the surrounding fluid Consider fluid motion Recall flow of water in a pipe Thermal Boundary Layer • A temperature profile similar to velocity profile. Temperature of pipe surface is kept constant. At the end of the thermal entry region, the boundary layer extends to the center of the pipe. Therefore, two boundary layers: hydrodynamic boundary layer and a thermal boundary layer. Analytical treatment is beyond the scope of this course. Instead we will use an empirical approach. Drawback of empirical approach: need to collect large amount of data. Reynolds Number: Nusselt Number: it is the dimensionless form of convective heat transfer coefficient. Consider a layer of fluid as shown If the fluid is stationary, then And Dividing Replacing l with a more general term for dimension, called the characteristic dimension, dc, we get hd N ≡ c Nu k Nusselt number is the enhancement in the rate of heat transfer caused by convection over the conduction mode. If NNu =1, then there is no improvement of heat transfer by convection over conduction. On the other hand, if NNu =10, then rate of convective heat transfer is 10 times the rate of heat transfer if the fluid was stagnant. Prandtl Number: It describes the thickness of the hydrodynamic boundary layer compared with the thermal boundary layer. It is the ratio between the molecular diffusivity of momentum to the molecular diffusivity of heat. kinematic viscosity υ N == Pr thermal diffusivity α μcp N = Pr k If NPr =1 then the thickness of the hydrodynamic and thermal boundary layers will be the same.
    [Show full text]
  • Turbulent-Prandtl-Number.Pdf
    Atmospheric Research 216 (2019) 86–105 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmosres Invited review article Turbulent Prandtl number in the atmospheric boundary layer - where are we T now? ⁎ Dan Li Department of Earth and Environment, Boston University, Boston, MA 02215, USA ARTICLE INFO ABSTRACT Keywords: First-order turbulence closure schemes continue to be work-horse models for weather and climate simulations. Atmospheric boundary layer The turbulent Prandtl number, which represents the dissimilarity between turbulent transport of momentum and Cospectral budget model heat, is a key parameter in such schemes. This paper reviews recent advances in our understanding and modeling Thermal stratification of the turbulent Prandtl number in high-Reynolds number and thermally stratified atmospheric boundary layer Turbulent Prandtl number (ABL) flows. Multiple lines of evidence suggest that there are strong linkages between the mean flowproperties such as the turbulent Prandtl number in the atmospheric surface layer (ASL) and the energy spectra in the inertial subrange governed by the Kolmogorov theory. Such linkages are formalized by a recently developed cospectral budget model, which provides a unifying framework for the turbulent Prandtl number in the ASL. The model demonstrates that the stability-dependence of the turbulent Prandtl number can be essentially captured with only two phenomenological constants. The model further explains the stability- and scale-dependences
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Demonstration of a Persistent Current in Superfluid Atomic Gas
    Demonstration of a persistent current in superfluid atomic gas One of the most remarkable properties of macroscopic quantum systems is the phenomenon of persistent flow. Current in a loop of superconducting wire will flow essentially forever. In a neutral superfluid, like liquid helium below the lambda point, persistent flow is observed as frictionless circulation in a hollow toroidal container. A Bose-Einstein condensate (BEC) of an atomic gas also exhibits superfluid behavior. While a number of experiments have confirmed superfluidity in an atomic gas BEC, persistent flow, which is regarded as the “gold standard” of superfluidity, had not been observed. The main reason for this is that persistent flow is most easily observed in a topology such as a ring or toroid, while past BEC experiments were primarily performed in spheroidal traps. Using a combination of magnetic and optical fields, we were able to create an atomic BEC in a toriodal trap, with the condensate filling the entire ring. Once the BEC was formed in the toroidal trap, we coherently transferred orbital angular momentum of light to the atoms (using a technique we had previously demonstrated) to get them to circulate in the trap. We observed the flow of atoms to persist for a time more than twenty times what was observed for the atoms confined in a spheroidal trap. The flow was observed to persist even when there was a large (80%) thermal fraction present in the toroidal trap. These experiments open the possibility of investigations of the fundamental role of flow in superfluidity and of realizing the atomic equivalent of superconducting circuits and devices such as SQUIDs.
    [Show full text]
  • Turbulent Prandtl Number and Its Use in Prediction of Heat Transfer Coefficient for Liquids
    Nahrain University, College of Engineering Journal (NUCEJ) Vol.10, No.1, 2007 pp.53-64 Basim O. Hasan Chemistry. Engineering Dept.- Nahrain University Turbulent Prandtl Number and its Use in Prediction of Heat Transfer Coefficient for Liquids Basim O. Hasan, Ph.D Abstract: eddy conductivity is unspecified in the case of heat transfer. The classical approach for obtaining the A theoretical study is performed to determine the transport mechanism for the heat transfer problem turbulent Prandtl number (Prt ) for liquids of wide follows the laminar approach, namely, the momentum range of molecular Prandtl number (Pr=1 to 600) and thermal transport mechanisms are related by a under turbulent flow conditions of Reynolds number factor, the Prandtl number, hence combining the range 10000- 100000 by analysis of experimental molecular and eddy viscosities one obtain the momentum and heat transfer data of other authors. A Boussinesq relation for shear stress: semi empirical correlation for Prt is obtained and employed to predict the heat transfer coefficient for du the investigated range of Re and molecular Prandtl ( ) 1 number (Pr). Also an expression for momentum eddy m dy diffusivity is developed. The results revealed that the Prt is less than 0.7 and is function of both Re and Pr according to the following relation: and the analogous relation for heat flux: Prt=6.374Re-0.238 Pr-0.161 q dT The capability of many previously proposed models of ( h ) 2 Prt in predicting the heat transfer coefficient is c p dy examined. Cebeci [1973] model is found to give good The turbulent Prandtl number is the ratio between the accuracy when used with the momentum eddy momentum and thermal eddy diffusivities, i.e., Prt= m/ diffusivity developed in the present analysis.
    [Show full text]
  • Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar
    Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma Mahendra K. Verma Department of Physics, Indian Institute of Technology, Kanpur 208016, India November 12, 2018 Abstract In this paper we have estimated typical anomalous viscosity, re- sistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron’s thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of mag- nitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. arXiv:chao-dyn/9509002v1 5 Sep 1995 1 1 Introduction The solar wind is a collisionless plasma; the distance travelled by protons between two consecutive Coulomb collisions is approximately 3 AU [Barnes, 1979]. Therefore, the dissipation in the solar wind involves wave-particle interactions rather than particle-particle collisions. For the observational evidence of the wave-particle interactions in the solar wind refer to the review articles by Gurnett [1991], Marsch [1991] and references therein. Due to these reasons for the calculations of transport coefficients in the solar wind, the scales of wave-particle interactions appear more appropriate than those of particle-particle interactions [Braginskii, 1965]. Note that the viscosity in a turbulent fluid is scale dependent.
    [Show full text]
  • Prandtl Number and Thermoacoustic Refrigerators M
    Prandtl number and thermoacoustic refrigerators M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. de Waele Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ͑Received 28 November 2001; revised 25 April 2002; accepted 4 May 2002͒ From kinetic gas theory, it is known that the Prandtl number for hard-sphere monatomic gases is 2/3. Lower values can be realized using gas mixtures of heavy and light monatomic gases. Prandtl numbers varying between 0.2 and 0.67 are obtained by using gas mixtures of helium–argon, helium–krypton, and helium–xenon. This paper presents the results of an experimental investigation into the effect of Prandtl number on the performance of a thermoacoustic refrigerator using gas mixtures. The measurements show that the performance of the refrigerator improves as the Prandtl number decreases. The lowest Prandtl number of 0.2, obtained with a mixture containing 30% xenon, leads to a coefficient of performance relative to Carnot which is 70% higher than with pure helium. © 2002 Acoustical Society of America. ͓DOI: 10.1121/1.1489451͔ PACS numbers: 43.35.Ud, 43.35.Ty ͓RR͔ I. INTRODUCTION while compressing and expanding. The interaction of the moving gas in the stack with the stack surface generates heat The basic understanding of the physical principles un- transport.2 A detailed description of the refrigerator can be derlying the thermoacoustic effect is well established and has found in the literature.3,6 been discussed in many papers.1,2 However, a quantitative experimental investigation of the effect of some important parameters on the behavior of the thermoacoustic devices is II.
    [Show full text]
  • Numerical Calculations of Two-Dimensional Large Prandtl Number Convection in a Box
    J. Fluid Mech. (2013), vol. 729, pp. 584–602. c Cambridge University Press 2013 584 doi:10.1017/jfm.2013.330 Numerical calculations of two-dimensional large Prandtl number convection in a box J. A. Whitehead1,†, A. Cotel2, S. Hart3, C. Lithgow-Bertelloni4 and W. Newsome5 1Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2Civil and Environmental Engineering Department, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109, USA 3Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 4Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 5Geological Sciences Department, University of Michigan, 1100 North University Avenue, Ann Arbor, MI 48109, USA (Received 30 August 2012; revised 17 June 2013; accepted 22 June 2013; first published online 24 July 2013) Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges Ra 103–106 and Pr 1; 10; 100; 1000 and . Calculations begin with cold fluid everywhereD and localizedD hot temperature at1 the centre of the bottom of a square two-dimensional chamber. For Ra > 20 000, temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away.
    [Show full text]
  • Contents 1 Classification of Phase Transitions
    PHY304 - Statistical Mechanics Spring Semester 2021 Dr. Anosh Joseph, IISER Mohali LECTURE 35 Monday, April 5, 2021 (Note: This is an online lecture due to COVID-19 interruption.) Contents 1 Classification of Phase Transitions 1 1.1 Order Parameter . .2 2 Critical Exponents 5 1 Classification of Phase Transitions The physics of phase transitions is a young research field of statistical physics. Let us summarize the knowledge we gained from thermodynamics regarding phases. The Gibbs’ phase rule is F = K + 2 − P; (1) with F denoting the number of intensive variables, K the number of particle species (chemical components), and P the number of phases. Consider a closed pot containing a vapor. With K = 1 we need 3 (= K + 2) extensive variables say, S; V; N for a complete description of the system. One of these say, V determines only size of the system. The intensive properties are completely described by F = 1 + 2 − 1 = 2 (2) intensive variables. For instance, by pressure and temperature. (We could also choose temperature and chemical potential.) The third intensive variable is given by the Gibbs’-Duhem relation X S dT − V dp + Ni dµi = 0: (3) i This relation tells us that the intensive variables PHY304 - Statistical Mechanics Spring Semester 2021 T; p; µ1; ··· ; µK , which are conjugate to the extensive variables S; V; N1; ··· ;NK are not at all independent of each other. In the above relation S; V; N1; ··· ;NK are now functions of the variables T; p; µ1; ··· ; µK , and the Gibbs’-Duhem relation provides the possibility to eliminate one of these variables.
    [Show full text]
  • The Influence of Prandtl Number on Free Convection in a Rectangular Cavity
    hr. J. Heor Mm\ Transfer. Vol. 24, pp. 125-131 0017-93lO/8ljOlOl-0125SOsoZ.OO/O 0 Pergamon Press Ltd. 1981. Printed in GreatBritain THE INFLUENCE OF PRANDTL NUMBER ON FREE CONVECTION IN A RECTANGULAR CAVITY W. P. GRAEBEL Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI. 48109, U.S.A. (Receioed 19 May 1980) Abstract-Natural convection in a rectangular cavity is considered for the problem where one vertical wall is heated and the other is cooled. The boundary layer flow is solved using a modified Oseen technique in a manner similar to Gill’s solution. Temperature and velocity profiles in the core, and the Nusselt number, are found as functions of the Rayleigh and Prandtl numbers and the length ratio. The solution indicates that for a Prandtl number less than l/7, a midsection shear layer develops. NOMENCLATURE more reasonable matching condition and obtained overall Nusselt numbers which are in good agreement C, constant of integration; with available experimental and numerical heat- 9, gravitational constant ; transfer data. H, cavity height; The present note generalizes Gill’s results for arbit- K = (Pr - l)/(Pr + 1); rary values of the Prandtl number, so that the small L, cavity length; Prandtl number limit, suitable for liquid metals, can Nu, Nusselt number ; pressure; also be obtained. The method of Bejan is used in P? evaluating the constant of integration which appears Pr, Prandtl number ; in the solution. 49 =2u,/v2 (K + 1)3; Q, total heat flux; BASIC ASSUMPTIONS Ra, = jlgL3(TL - T&q Rayleigh number; The height of the cavity is taken as H and the T, temperature; horizontal spacing of the walls as The vertical walls 11,w, velocity components, u = a*/az, w = L.
    [Show full text]
  • Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
    Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³).
    [Show full text]
  • SUPERCOMPUTATIONS of LOW-PRANDTL-NUMBER CONVECTION FLOWS Jorg¨ Schumacher1 and Janet D
    XXIV ICTAM, 21-26 August 2016, Montreal, Canada SUPERCOMPUTATIONS OF LOW-PRANDTL-NUMBER CONVECTION FLOWS Jorg¨ Schumacher1 and Janet D. Scheel2 1Department of Mechanical Engineering, Technische Universitat¨ Ilmenau, Ilmenau, Germany 2Department of Physics, Occidental College, Los Angeles, USA Summary Massively parallel supercomputations are an important analysis tool to study the fundamental local and global mechanisms of heat and momentum transfer in turbulent convection. We discuss the perspectives and challenges in this vital field of fundamental turbulence research for the case of convection at very low Prandtl numbers. MOTIVATION AND SIMULATION MODEL Turbulent convection is an important area of present research in fluid dynamics with applications to diverse phenomena in nature and technology. The turbulent Rayleigh-Benard´ convection (RBC) model is at the core of all these turbulent flows. It can be studied in a controlled manner, but has enough complexity to contain the key features of turbulence in heated fluids. This flow in cylindrical cells has been investigated intensively over the last few years in several laboratory experiments all over the world [1]. In RBC, a fluid cell or layer is kept at a constant temperature difference ∆T = Tbottom − Ttop between top and bottom plates which are separated by a vertical distance H. The Rayleigh and Prandtl numbers are given by gαH3∆T ν Ra = and P r = : (1) νκ κ The parameter Ra characterizes the thermal driving in convective turbulence with the acceleration due to gravity, g, the thermal expansion coefficient, α, the kinematic viscosity, ν, and the thermal diffusivity, κ. The hard turbulence regime in RBC is established for Ra ≥ 106.
    [Show full text]