British Journal of Nutrition (2014), 111, 2135–2145 Doi:10.1017/S000711451400021X Q the Authors 2014

Total Page:16

File Type:pdf, Size:1020Kb

British Journal of Nutrition (2014), 111, 2135–2145 Doi:10.1017/S000711451400021X Q the Authors 2014 Downloaded from British Journal of Nutrition (2014), 111, 2135–2145 doi:10.1017/S000711451400021X q The Authors 2014 https://www.cambridge.org/core Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats Alexandra Dostal1, Christophe Lacroix1*, Van T. Pham1, Michael B. Zimmermann2, . IP address: Christophe Del’homme3, Annick Bernalier-Donadille3 and Christophe Chassard1 1Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 170.106.202.8 2Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 3UR454 Microbiology Unit, INRA, Clermont-Ferrand Research Centre, St Gene`s-Champanelle, France (Submitted 17 June 2013 – Final revision received 14 November 2013 – Accepted 14 January 2014 – First published online 21 February 2014) , on 01 Oct 2021 at 15:56:07 Abstract The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an , subject to the Cambridge Core terms of use, available at Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet followed by 70 mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequen- cing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35 mg Fe/kg diet after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concen- tration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut health. Key words: Iron: Gut microbiota: Colitis: Butyrate British Journal of Nutrition https://www.cambridge.org/core/terms Research carried out in the past few years has highlighted the prausnitzii, Eubacterium hallii and Roseburia spp.,(8,9) and is importance of the gut microbiota to intestinal health and host absorbed by the mucosa where it can act as an energy source health in general(1,2). The gut microbiota plays a crucial role in for colonocytes(10). Moreover, butyrate has anti-inflammatory the development and maintenance of the immune system(3), effects, is able to promote apoptosis in cancer cells and has colonisation resistance to environmental bacteria, such as been shown to inhibit virulence in enteropathogens(11,12). pathogens(4), extraction of energy from indigestible food com- Gut microbiota composition and metabolic activity not ponents and production of metabolites that influence gut only affect the host but are also strongly modified by host health(5). SCFA have been widely investigated due to their and environmental factors. Diet composition, such as fibre ability to influence several aspects of host health. Many mem- content, has been shown to have a strong impact on the (13,14) . bers of the gut microbiota produce acetate and propionate. gut microbiota . Recent studies have elucidated the https://doi.org/10.1017/S000711451400021X Acetate is either reused by other bacteria for butyrate for- differences in gut microbial consortium in populations living mation or absorbed by the host and can be used as an in developed and developing countries possibly due to energy source, while propionate is involved in gluconeo- the effects of diet or high prevalence of malnutrition in genesis(6,7). The most investigated end metabolite of the gut developing countries, which can strongly influence the gut microbiota is probably butyrate due to its importance to microbiota(3,15 – 20). One of the most common nutritional mucosal health. Butyrate is mainly produced by the members deficiencies is Fe deficiency, affecting more than two billion of Clostridium clusters IV and XIVa, such as Faecalibacterium people worldwide, especially in developing countries(21,22). Abbreviations: qPCR, quantitative PCR; SRB, sulphate-reducing bacteria. * Corresponding author: C. Lacroix, fax þ41 44 632 14 03, email [email protected] Downloaded from 2136 A. Dostal et al. Fe deficiency affects cognitive and motor development in microbiota composition and metabolic activity, as well as https://www.cambridge.org/core children and increases the maternal/perinatal mortality gut inflammation, were assessed after killing the rats at the rate(23). It also has an impact on gut microbiota composition end of the study. and metabolic activity. In a recent rat study, we have shown a decrease in the abundance of Roseburia spp./Eubacterium rectale and Bacteroides spp. along with a large decrease Materials and methods in the concentrations of caecal butyrate and propionate in Rats and diets highly Fe-deficient young rats(24). Earlier studies in mice have also demonstrated that low gut luminal Fe concentrations A total of forty germ-free female Fischer 344 rats were bred . IP address: have an impact on gut microbiota composition leading to a at the INRA facilities of Clermont-Ferrand-Theix, France. decrease in the abundance of Desulfovibrio spp. and an They were kept in sterile isolators with positive pressure (25) (40,43) increase in that of Turicibacter spp. while elevating the over the entire trial period as described previously . 170.106.202.8 counts of lactobacilli(26). Using an in vitro colonic fermen- Rats were fed an irradiated standard diet for germ-free rodents tation model mimicking the proximal colon of a child, we (SAFE) and given free access to sterilised water. Rats were have also confirmed strong dysbiosis of the gut microbiota maintained pairwise in standard Macrolon cages under a , on under very-low-Fe conditions(27). 12 h light–12 h dark cycle under constant temperature and 01 Oct 2021 at 15:56:07 Usual strategies for Fe-deficiency anaemia correction are humidity. At 5 weeks of age, rats were inoculated with a Fe supplementation and Fe fortification of foods; FeSO4 is human faecal microbiota slurry obtained from a healthy volun- often used, which is highly bioavailable(28). However, absorp- teer (age 6 years) not treated with antibiotics 3 months before tion of Fe is usually low (5–20 %) and takes place mainly in faecal sample collection. The faecal sample was processed the duodenum, while the main fraction of Fe reaches the within 6 h of defecation and maintained under anaerobic (21) colon, where it might affect the gut microbiota . Indeed, conditions. After 1000-fold dilution with an anaerobic mineral , subject to the Cambridge Core terms of use, available at gut microbiota composition in Fe-deficient rats supplemented solution, 1 ml of faecal slurry was orally inoculated into germ- with Fe has been found to be partially recovered and gut free rats. The microbiota was allowed to establish for 3 weeks microbiota metabolic activity to be strongly promoted(24). while the rats were being fed a control diet with normal Fe Animal studies in rats and pigs have also reported dysbiosis concentrations equivalent to a standardised American Institute of the gut microbiota due to Fe supplementation(26,29), of Nutrition (AIN)-93G purified diet(44) before starting the recently confirmed in human studies. School children in different feeding regimens. Coˆte d’Ivoire have been found to have higher numbers All diets were produced by Dyets Inc. and based on a of Enterobacteriaceae and decreased numbers of lacto- standard AIN-93G diet differing only in Fe concentration bacilli in faeces after Fe supplementation for 6 months and (Table S1, available online). The study set-up (Fig. 1) was increased concentrations of calprotectin, a marker for gut designed according to the classical Fe depletion–repletion inflammation (30). Infants given an Fe-supplemented diet for assay of Forbes et al.(42) and comprised five different groups 3 months have been found to have higher relative abundances of rats. A ‘control’ group of rats (n 8) was fed a regular AIN- (31) of Bacteroides spp. and lower abundances of lactobacilli . 93G diet containing a mean of 37·6 (SEM 0·9) mg Fe/kg diet British Journal of Nutrition An unanswered question raised by these studies is whether from ferric citrate over the entire trial period of 16 weeks, https://www.cambridge.org/core/terms dietary Fe alone is a modulation factor for the gut microbiota while a ‘Fe-deficient’ group of rats (n 8) was fed an Fe-deficient and intestinal inflammation or whether Fe status and suscepti- diet containing 2·9 (SEM 0·2) mg Fe/kg diet. A further two groups bility to gut inflammation could also play a role in the of rats, ‘35 ppm Fe’ group (n 8) and ‘70 ppm Fe’ group (n 8), observed changes in gut microbiota composition. Both were first fed a Fe-deficient diet for 12 weeks and were then changes in host Fe homeostasis and gut inflammation can supplemented with either a 35 ppm Fe diet containing 32·2 (32 – 34) alter the gut microbiota composition . Our previous (SEM 1·0) mg Fe/kg diet from FeSO4 or a 70 ppm Fe diet contain- study using Sprague–Dawley rats with a rodent microbiota ing 66·1 (SEM 7·8) mg Fe/kg diet from FeSO4 and ferric citrate to has investigated the changes in gut microbiota composition mimic Fe supplementation with two different Fe sources and due to Fe supplementation in a highly Fe-deficient host(24).
Recommended publications
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • Individuality in Gut Microbiota Composition Is a Complex Polygenic Trait Shaped by Multiple Environmental and Host Genetic Factors
    Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors Andrew K. Bensona,1, Scott A. Kellyb, Ryan Leggea, Fangrui Maa, Soo Jen Lowa, Jaehyoung Kima, Min Zhanga, Phaik Lyn Oha, Derrick Nehrenbergb, Kunjie Huab, Stephen D. Kachmanc, Etsuko N. Moriyamad, Jens Waltera, Daniel A. Petersona, and Daniel Pompb,e aDepartment of Food Science and Technology and Core for Applied Genomics and Ecology, University of Nebraska, Lincoln, NE 68583-0919; bDepartment of Genetics, Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC 27599-7545; cDepartment of Statistics, University of Nebraska, Lincoln, NE 68583-0963; dSchool of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0118; and eDepartment of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7461 Edited by Trudy F. C. Mackay, North Carolina State University, Raleigh, NC, and approved September 8, 2010 (received for review June 10, 2010) In vertebrates, including humans, individuals harbor gut microbial to be multifactorial, with both environmental and genetic compo- communities whose species composition and relative proportions nents (11–13), and the contribution of the gut microbiota is cur- of dominant microbial groups are tremendously varied. Although rently viewed as an environmental factor (14). Although a number external and stochastic factors clearly contribute to the individu- of studies have suggested that composition of the gut microbiota ality of the microbiota, the fundamental principles dictating how may be subject to host genetic forces, existing evidence is conflicting environmental factors and host genetic factors combine to shape and confounded by the genetic diversity of vertebrate (especially this complex ecosystem are largely unknown and require system- human) populations and strong environmental effects (15–19).
    [Show full text]
  • Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449472; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Gut Microbiota predicts Healthy Late-life Aging in Male Mice 2 Shanlin Ke1,2, Sarah J. Mitchell3,4, Michael R. MacArthur3,4, Alice E. Kane5, David A. 3 Sinclair5, Emily M. Venable6, Katia S. Chadaideh6, Rachel N. Carmody6, Francine 4 Grodstein1,7, James R. Mitchell4, Yang-Yu Liu1 5 6 1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical 7 School, Boston, Massachusetts 02115, USA. 8 2State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural 9 University 330045, China. 10 3Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 11 02115, USA. 12 4Department of Health Sciences and Technology, ETH Zurich, Zurich 8005 Switzerland. 13 5Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at 14 Harvard Medical School, Boston, MA 02115 USA. 15 6Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. 16 7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. 17 18 #To whom correspondence should be addressed: Y.-Y.L. ([email protected]) and 19 S.J.M. ([email protected]) 20 21 Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most 22 species. There is growing evidence that the gut microbiota has a pivotal role in host health 23 and age-related pathological conditions.
    [Show full text]
  • Human Microbiota Reveals Novel Taxa and Extensive Sporulation Hilary P
    OPEN LETTER doi:10.1038/nature17645 Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation Hilary P. Browne1*, Samuel C. Forster1,2,3*, Blessing O. Anonye1, Nitin Kumar1, B. Anne Neville1, Mark D. Stares1, David Goulding4 & Trevor D. Lawley1 Our intestinal microbiota harbours a diverse bacterial community original faecal sample and the cultured bacterial community shared required for our health, sustenance and wellbeing1,2. Intestinal an average of 93% of raw reads across the six donors. This overlap was colonization begins at birth and climaxes with the acquisition of 72% after de novo assembly (Extended Data Fig. 2). Comparison to a two dominant groups of strict anaerobic bacteria belonging to the comprehensive gene catalogue that was derived by culture-independent Firmicutes and Bacteroidetes phyla2. Culture-independent, genomic means from the intestinal microbiota of 318 individuals4 found that approaches have transformed our understanding of the role of the 39.4% of the genes in the larger database were represented in our cohort human microbiome in health and many diseases1. However, owing and 73.5% of the 741 computationally derived metagenomic species to the prevailing perception that our indigenous bacteria are largely identified through this analysis were also detectable in the cultured recalcitrant to culture, many of their functions and phenotypes samples. remain unknown3. Here we describe a novel workflow based on Together, these results demonstrate that a considerable proportion of targeted phenotypic culturing linked to large-scale whole-genome the bacteria within the faecal microbiota can be cultured with a single sequencing, phylogenetic analysis and computational modelling that growth medium.
    [Show full text]
  • Schistosoma Mansoni Infection Is Associated with Quantitative and Qualitative Modifications of the Mammalian Intestinal Microbio
    www.nature.com/scientificreports OPEN Schistosoma mansoni infection is associated with quantitative and qualitative modifcations of the Received: 4 April 2018 Accepted: 20 July 2018 mammalian intestinal microbiota Published: xx xx xxxx Timothy P. Jenkins1, Laura E. Peachey1, Nadim J. Ajami 2, Andrew S. MacDonald 3, Michael H. Hsieh4,5,6, Paul J. Brindley7, Cinzia Cantacessi 1 & Gabriel Rinaldi7,8 In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fuctuations in the composition of the gut microbial fora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a signifcant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-infected mice when compared to uninfected control animals. These data support a role of the mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves as a foundation for the design of mechanistic studies to unravel the complex relationships amongst parasitic helminths, gut microbiota, pathophysiology of infection and host immunity. Schistosomiasis, a major neglected tropical disease, is considered the most problematic of the human helmin- thiases in terms of morbidity and mortality1.
    [Show full text]
  • Ketogenic Diet Enhances Neurovascular Function with Altered
    www.nature.com/scientificreports OPEN Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy Received: 14 September 2017 Accepted: 17 April 2018 mice Published: xx xx xxxx David Ma1, Amy C. Wang1, Ishita Parikh1, Stefan J. Green 2, Jared D. Hofman1,3, George Chlipala2, M. Paul Murphy1,4, Brent S. Sokola5, Björn Bauer5, Anika M. S. Hartz1,3 & Ai-Ling Lin1,3,6 Neurovascular integrity, including cerebral blood fow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had signifcant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively benefcial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-infammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our fndings suggest that KD intervention started in the early stage may enhance brain vascular function, increase benefcial gut microbiota, improve metabolic profle, and reduce risk for AD.
    [Show full text]
  • Characterization of the Fecal Microbiome in Cats with Inflammatory Bowel Disease Or Alimentary Small Cell Lymphoma
    www.nature.com/scientificreports OPEN Characterization of the fecal microbiome in cats with infammatory bowel disease or alimentary small cell lymphoma Sina Marsilio1,2*, Rachel Pilla1, Benjamin Sarawichitr1, Betty Chow 3,6, Steve L. Hill3,7, Mark R. Ackermann4, J. Scot Estep5, Jonathan A. Lidbury1, Joerg M. Steiner1 & Jan S. Suchodolski1 Feline chronic enteropathy (CE) is a common gastrointestinal disorder in cats and mainly comprises infammatory bowel disease (IBD) and small cell lymphoma (SCL). Both IBD and SCL in cats share features with chronic enteropathies such as IBD and monomorphic epitheliotropic intestinal T-cell lymphoma in humans. The aim of this study was to characterize the fecal microbiome of 38 healthy cats and 27 cats with CE (13 cats with IBD and 14 cats with SCL). Alpha diversity indices were signifcantly decreased in cats with CE (OTU p = 0.003, Shannon Index p = 0.008, Phylogenetic Diversity p = 0.019). ANOSIM showed a signifcant diference in bacterial communities, albeit with a small efect size (P = 0.023, R = 0.073). Univariate analysis and LEfSE showed a lower abundance of facultative anaerobic taxa of the phyla Firmicutes (families Ruminococcaceae and Turicibacteraceae), Actinobacteria (genus Bifdobacterium) and Bacteroidetes (i.a. Bacteroides plebeius) in cats with CE. The facultative anaerobic taxa Enterobacteriaceae and Streptococcaceae were increased in cats with CE. No signifcant diference between the microbiome of cats with IBD and those with SCL was found. Cats with CE showed patterns of dysbiosis similar to those in found people with IBD. Feline chronic enteropathy (CE) is common in elderly cats and is defned as the presence of clinical signs of gastrointestinal disease for more than 3 weeks in the absence of infectious intestinal diseases (e.g., parasites) and extraintestinal causes (e.g., renal disease, hyperthyroidism)1.
    [Show full text]
  • A Synthetic Probiotic Engineered for Colorectal Cancer Therapy Modulates Gut Microbiota
    A Synthetic Probiotic Engineered for Colorectal Cancer Therapy Modulates Gut Microbiota Yusook Chung Cell Biotech, Co., Ltd. Yongku Ryu Cell Biotech, Co., Ltd. Byung Chull An Cell Biotech, Co., Ltd. Yeo-Sang Yoon Cell Biotech, Co., Ltd. Oksik Choi Cell Biotech, Co., Ltd. Tai Yeub Kim Cell Biotech, Co., Ltd. Jae Kyung Yoon Yonsei University Jun Young Ahn Cell Biotech, Co., Ltd. Ho Jin Park Cell Biotech, Co., Ltd. Soon-Kyeong Kwon Yonsei University Jihyun F. Kim ( [email protected] ) Yonsei University https://orcid.org/0000-0001-7715-6992 Myung Jun Chung ( [email protected] ) Cell Biotech, Co., Ltd. Research Keywords: Lactobacillus rhamnosus CBT LR5 (KCTC 12202BP), alanine racemase, DLD-1 xenograft, AOM/DSS model of colitis-associated cancer, microbiome, Akkermansia, Turicibacter Posted Date: August 13th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-56674/v1 Page 1/26 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/26 Abstract Background: Successful chemoprevention or chemotherapy is achieved through targeted delivery of prophylactic agents during initial phases of carcinogenesis or therapeutic agents to malignant tumors. Bacteria can be used as anticancer agents, but efforts to utilize attenuated pathogenic bacteria suffer from the risk of toxicity or infection. Lactic acid bacteria are safe to eat and often confer health benets, making them ideal candidates for live vehicles engineered to deliver anticancer drugs. Results: In this study, we developed an effective bacterial drug delivery system for colorectal cancer (CRC) therapy using the lactic acid bacterium Pediococcus pentosaceus. It is equipped with dual gene cassettes driven by a strong inducible promoter that encode the therapeutic protein P8 fused to a secretion signal peptide and a complementation system.
    [Show full text]
  • Maturation of the Gut Microbiome During the First Year of Life
    1 Maturation of the gut microbiome during the first year of life 2 contributes to the protective farm effect on childhood asthma 3 4 Martin Depner, PhD,1 Diana Hazard Taft, PhD,2 Pirkka V. Kirjavainen, PhD,3,4 Karen M. Kalanetra, 5 PhD,2 Anne M. Karvonen, PhD,3 Stefanie Peschel, MSc,1 Elisabeth Schmausser-Hechfellner, BSc,1 6 Caroline Roduit, MD, PhD,5,6,7 Remo Frei, PhD,5,8 Roger Lauener, MD,5,7,9,10 Amandine Divaret- 7 Chauveau, MD,11,12,13 Jean-Charles Dalphin, MD,13† Josef Riedler, MD,14 Marjut Roponen, PhD,15 8 Michael Kabesch MD,16 Harald Renz, MD, PhD,17,18 Juha Pekkanen, MD, PhD,3,19 Freda M. 9 Farquharson,20 Petra Louis, PhD,20 David Mills, PhD2, Erika von Mutius, MD,1,18,21 PASTURE study 10 group,* Markus J. Ege, MD18,21 11 12 Affiliations 13 1 Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research 14 Center for Environmental Health, Neuherberg, Germany 15 2 Viticulture and Enology, University of California, Davis, USA 16 3 Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland 17 4 Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland 18 5 Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland 19 6 Children's Hospital, University of Zürich, Zürich, Switzerland 20 7 Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland 21 8 Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland 22 9 University of Zurich, Zurich, Switzerland 23 10
    [Show full text]
  • Dakotella Fusiforme Gen. Nov., Sp. Nov., Isolated from Healthy Human Feces
    Description of a new member of the family Erysipelotrichaceae: Dakotella fusiforme gen. nov., sp. nov., isolated from healthy human feces Sudeep Ghimire, Supapit Wongkuna and Joy Scaria Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America ABSTRACT A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family Erysipelotrichaceae. Within this family, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG- 426-CC-2, Eubacterium dolichum DSM 3991T and E. tortuosum DSM 3987T (=ATCC 25548T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502T placed itself close to C. innocuum in the 16S rRNA phylogeny. The members of genus Clostridium within family Erysipelotrichaceae was proposed to be reassigned to genus Erysipelatoclostridium to resolve the misclassification of genus Clostridium. Therefore, C. innocuum was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus Erysipelatoclostridium, SG502T warranted a separate genus even though its 16S rRNA similarity was >95% when comapred to C. innocuum. The strain was 71.8% similar at ANI, 19.8% [17.4–22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor C. innocuum. The genome size was nearly 2,683,792 bp with 32.88 mol% G+C content, Submitted 19 November 2019 which is about half the size of C.
    [Show full text]
  • Microbial Dysbiosis and Polyamine Metabolism As Predictive Markers for Early Detection During Progression of Pancreatic Adenocarcinoma in Spontaneous Mouse Model
    bioRxiv preprint doi: https://doi.org/10.1101/342634; this version posted June 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Microbial Dysbiosis and polyamine metabolism as predictive markers for early detection during progression of pancreatic adenocarcinoma in spontaneous mouse model Roberto Mendez#1, Kousik Kesh#1, Nivedita Arora2, Leá Di Martino1,4, Florencia McAllister5, Nipun Merchant1,6, Sulagna Banerjee $ 1,6 and Santanu Banerjee$1,6 Affiliation 1 Department of Surgery, University of Miami, FL, USA 2 Department of Surgery, University of Minnesota, MN, USA 3 Department of Pharmacology, University of Minnesota, USA 4Universite´ Grenoble Alpes, Isère, France. 5 Department of Clinical Cancer Prevention. The University of Texas MD Anderson Cancer Center 6 Sylvester Comprehensive Cancer Center, University of Miami, FL,USA Running title Whole genome sequencing of PDAC microbiome # Contributed equally $ Corresponding Author- [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/342634; this version posted June 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated to the abysmal survival rate in patients. In addition to several potential detection tools under active investigation, we present the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high-risk for PDAC.
    [Show full text]