Schistosoma Mansoni Infection Is Associated with Quantitative and Qualitative Modifications of the Mammalian Intestinal Microbio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: a New Frontier for Targeting?
8 Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: A New Frontier for Targeting? Letizia Mazzini1 • Fabiola De Marchi1 • Elena Niccolai2 • Jessica Mandrioli3, Amedeo Amedei2 1ALS Centre, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy; 2Department of Experimental and clinical Medicine, University of Florence, Firenze, Italy; 3Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy Author for correspondence: Letizia Mazzini, ALS Centre, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy. Email: [email protected] Doi: https://doi.org/10.36255/exonpublications.amyotrophiclateralsclerosis. microbiota.2021 Abstract: Amyotrophic lateral sclerosis (ALS) is a rare and severe neurodegenera- tive disease affecting the upper and lower motor neurons, causing diffuse muscle paralysis. Etiology and pathogenesis remain largely unclear, but several environ- mental, genetic, and molecular factors are thought to be involved in the disease process. Emerging data identify a relationship between gut microbiota dysbiosis and neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and ALS. In these disorders, neuroinflammation is being increasingly recognized as a driver for disease onset and progression. Gut bacteria play a crucial role in In: Amyotrophic Lateral Sclerosis. Araki T (Editor), Exon Publications, Brisbane, Australia. ISBN: -
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
British Journal of Nutrition (2014), 111, 2135–2145 Doi:10.1017/S000711451400021X Q the Authors 2014
Downloaded from British Journal of Nutrition (2014), 111, 2135–2145 doi:10.1017/S000711451400021X q The Authors 2014 https://www.cambridge.org/core Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats Alexandra Dostal1, Christophe Lacroix1*, Van T. Pham1, Michael B. Zimmermann2, . IP address: Christophe Del’homme3, Annick Bernalier-Donadille3 and Christophe Chassard1 1Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 170.106.202.8 2Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 3UR454 Microbiology Unit, INRA, Clermont-Ferrand Research Centre, St Gene`s-Champanelle, France (Submitted 17 June 2013 – Final revision received 14 November 2013 – Accepted 14 January 2014 – First published online 21 February 2014) , on 01 Oct 2021 at 15:56:07 Abstract The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an , subject to the Cambridge Core terms of use, available at Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet followed by 70 mg Fe/kg diet. -
Diversity in the Extracellular Vesicle-Derived Microbiome of Tissues According to Tumor Progression in Pancreatic Cancer
cancers Article Diversity in the Extracellular Vesicle-Derived Microbiome of Tissues According to Tumor Progression in Pancreatic Cancer Jin-Yong Jeong 1, Tae-Bum Kim 2 , Jinju Kim 1, Hwi Wan Choi 1, Eo Jin Kim 1, Hyun Ju Yoo 1 , Song Lee 3, Hye Ryeong Jun 3, Wonbeak Yoo 4 , Seokho Kim 5, Song Cheol Kim 3,6,* and Eunsung Jun 1,3,* 1 Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; [email protected] (J.-Y.J.); [email protected] (J.K.); [email protected] (H.W.C.); [email protected] (E.J.K.); [email protected] (H.J.Y.) 2 Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; [email protected] 3 Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; [email protected] (S.L.); [email protected] (H.R.J.) 4 Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; [email protected] 5 Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; [email protected] 6 Biomedical Engineering Research Center, Asan Institute of Life Science, AMIST, Asan Medical Center, Seoul 05505, Korea * Correspondence: [email protected] (S.C.K.); [email protected] (E.J.); Tel.: +82-2-3010-3936 (S.C.K.); +82-2-3010-1696 (E.J.); Fax: +82-2-474-9027 (S.C.K.); +82-2-474-9027 (E.J.) Received: 13 July 2020; Accepted: 17 August 2020; Published: 19 August 2020 Abstract: This study was conducted to identify the composition and diversity of the microbiome in tissues of pancreatic cancer and to determine its role. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes % -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
Analyse Bibliographique Sur Le Microbiote Intestinal Et Son Etude Dans Des Modeles Animaux De Maladies Metaboliques, En Particulier Chez Le Primate Non Humain These
VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) Liste du corps enseignant Liste des Enseignants du Campus Vétérinaire de Lyon (01-09-2019) ABITBOL Marie DEPT-BASIC-SCIENCES Professeur ALVES-DE-OLIVEIRA Laurent DEPT-BASIC-SCIENCES Maître de conférences ARCANGIOLI Marie-Anne DEPT-ELEVAGE-SPV Professeur AYRAL Florence DEPT-ELEVAGE-SPV Maître de conférences BECKER Claire DEPT-ELEVAGE-SPV Maître de conférences BELLUCO Sara DEPT-AC-LOISIR-SPORT Maître de conférences BENAMOU-SMITH Agnès DEPT-AC-LOISIR-SPORT Maître de conférences BENOIT Etienne DEPT-BASIC-SCIENCES Professeur BERNY Philippe DEPT-BASIC-SCIENCES Professeur BONNET-GARIN Jeanne-Marie DEPT-BASIC-SCIENCES Professeur BOULOCHER Caroline DEPT-BASIC-SCIENCES -
Complete Genome Sequence of Akkermansia Glycaniphila Strain Pytt, a Mucin-Degrading Specialist of the Reticulated Python Gut
PROKARYOTES crossm Complete Genome Sequence of Akkermansia glycaniphila Strain PytT,a Mucin-Degrading Specialist of the Reticulated Python Gut Downloaded from Janneke P. Ouwerkerk,a Jasper J. Koehorst,b Peter J. Schaap,b Jarmo Ritari,d Lars Paulin,c Clara Belzer,a Willem M. de Vosa,d,e Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlandsa; Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlandsb; Institute of Biotechnology, University of Helsinki, Helsinki, Finlandc; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finlandd; RPU Immunobiology, Department of Bacteriology & Immunology, University of Helsinki, Helsinki, Finlande ABSTRACT Akkermansia glycaniphila is a novel Akkermansia species that was iso- http://mra.asm.org/ lated from the intestine of the reticulated python and shares the capacity to de- Received 16 August 2016 Accepted 1 grade mucin with the human strain Akkermansia muciniphila MucT. Here, we report November 2016 Published 5 January 2017 Citation Ouwerkerk JP, Koehorst JJ, Schaap PJ, T the complete genome sequence of strain Pyt of 3,074,121 bp. The genomic analysis Ritari J, Paulin L, Belzer C, de Vos WM. 2017. reveals genes for mucin degradation and aerobic respiration. Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut. he ability to grow on mucin as a sole carbon and nitrogen source is a distinctive Genome Announc 5:e01098-16. https:// doi.org/10.1128/genomeA.01098-16. Tfeature of the human isolate Akkermansia muciniphila MucT (1). A. glycaniphila strain Copyright © 2017 Ouwerkerk et al. This is an T on February 21, 2019 by guest Pyt is the second Akkermansia species described to be mucolytic in pure culture (2). -
Phylogenomic Analysis of 589 Metagenome-Assembled Genomes Encompassing All Major Prokaryotic Lineages from the Gut of Higher Termites
Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites Vincent Hervé1, Pengfei Liu1, Carsten Dietrich1, David Sillam-Dussès2, Petr Stiblik3, Jan Šobotník3 and Andreas Brune1 1 Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany 2 Laboratory of Experimental and Comparative Ethology EA 4443, Université Paris 13, Villetaneuse, France 3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ABSTRACT “Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different Submitted 29 August 2019 gut compartments of eight higher termite species that encompass 17 prokaryotic