Individuality in Gut Microbiota Composition Is a Complex Polygenic Trait Shaped by Multiple Environmental and Host Genetic Factors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
British Journal of Nutrition (2014), 111, 2135–2145 Doi:10.1017/S000711451400021X Q the Authors 2014
Downloaded from British Journal of Nutrition (2014), 111, 2135–2145 doi:10.1017/S000711451400021X q The Authors 2014 https://www.cambridge.org/core Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats Alexandra Dostal1, Christophe Lacroix1*, Van T. Pham1, Michael B. Zimmermann2, . IP address: Christophe Del’homme3, Annick Bernalier-Donadille3 and Christophe Chassard1 1Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 170.106.202.8 2Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland 3UR454 Microbiology Unit, INRA, Clermont-Ferrand Research Centre, St Gene`s-Champanelle, France (Submitted 17 June 2013 – Final revision received 14 November 2013 – Accepted 14 January 2014 – First published online 21 February 2014) , on 01 Oct 2021 at 15:56:07 Abstract The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an , subject to the Cambridge Core terms of use, available at Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet followed by 70 mg Fe/kg diet. -
The Critical Role of Dietary Foliage in Maintaining the Gut Microbiome And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by IUPUIScholarWorks OPEN The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous Received: 31 May 2018 Accepted: 13 September 2018 sifakas Published: xx xx xxxx Lydia K. Greene 1,2, Erin A. McKenney3,4, Thomas M. O’Connell5 & Christine M. Drea1,2,3 The gut microbiome (GMB) of folivores metabolizes dietary fber into nutrients, including short- chain fatty acids (SCFAs); however, experiments probing the consequences of foliage quality on host GMBs are lacking. We therefore examined GMB structure and function via amplicon sequencing and Nuclear Magnetic Resonance spectroscopy in 31 captive sifakas (Propithecus coquereli) during dietary manipulations associated with husbandry. Supplementing standard diets with diverse foliage blends, versus with a single plant species, promoted more diverse GMBs, enriched for taxa implicated in plant-fber metabolism, but depleted in taxa implicated in starch metabolism and bile tolerance. The consumption of diverse blends was associated with greater concentrations of colonic SCFAs. Abundant foliage, via forest access, promoted compositionally distinct and more stable GMBs, but reduced concentrations of SCFAs, possibly refecting selection of high-quality leaves. In 11 subjects denied forest access, we examined the temporal pace of microbial shifts when supplemental foliage was abruptly switched between diverse blends and single species. The sifaka GMB responded within days, with community diversity and composition closely tracking foliage diversity. By providing experimental evidence that the folivore GMB is sensitive to minor changes in dietary foliage, we reveal the fragility of specialist GMBs, with implications for managing the wellbeing of endangered wildlife. -
Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade. -
Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449472; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Gut Microbiota predicts Healthy Late-life Aging in Male Mice 2 Shanlin Ke1,2, Sarah J. Mitchell3,4, Michael R. MacArthur3,4, Alice E. Kane5, David A. 3 Sinclair5, Emily M. Venable6, Katia S. Chadaideh6, Rachel N. Carmody6, Francine 4 Grodstein1,7, James R. Mitchell4, Yang-Yu Liu1 5 6 1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical 7 School, Boston, Massachusetts 02115, USA. 8 2State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural 9 University 330045, China. 10 3Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 11 02115, USA. 12 4Department of Health Sciences and Technology, ETH Zurich, Zurich 8005 Switzerland. 13 5Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at 14 Harvard Medical School, Boston, MA 02115 USA. 15 6Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. 16 7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. 17 18 #To whom correspondence should be addressed: Y.-Y.L. ([email protected]) and 19 S.J.M. ([email protected]) 20 21 Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most 22 species. There is growing evidence that the gut microbiota has a pivotal role in host health 23 and age-related pathological conditions. -
Human Microbiota Reveals Novel Taxa and Extensive Sporulation Hilary P
OPEN LETTER doi:10.1038/nature17645 Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation Hilary P. Browne1*, Samuel C. Forster1,2,3*, Blessing O. Anonye1, Nitin Kumar1, B. Anne Neville1, Mark D. Stares1, David Goulding4 & Trevor D. Lawley1 Our intestinal microbiota harbours a diverse bacterial community original faecal sample and the cultured bacterial community shared required for our health, sustenance and wellbeing1,2. Intestinal an average of 93% of raw reads across the six donors. This overlap was colonization begins at birth and climaxes with the acquisition of 72% after de novo assembly (Extended Data Fig. 2). Comparison to a two dominant groups of strict anaerobic bacteria belonging to the comprehensive gene catalogue that was derived by culture-independent Firmicutes and Bacteroidetes phyla2. Culture-independent, genomic means from the intestinal microbiota of 318 individuals4 found that approaches have transformed our understanding of the role of the 39.4% of the genes in the larger database were represented in our cohort human microbiome in health and many diseases1. However, owing and 73.5% of the 741 computationally derived metagenomic species to the prevailing perception that our indigenous bacteria are largely identified through this analysis were also detectable in the cultured recalcitrant to culture, many of their functions and phenotypes samples. remain unknown3. Here we describe a novel workflow based on Together, these results demonstrate that a considerable proportion of targeted phenotypic culturing linked to large-scale whole-genome the bacteria within the faecal microbiota can be cultured with a single sequencing, phylogenetic analysis and computational modelling that growth medium. -
Schistosoma Mansoni Infection Is Associated with Quantitative and Qualitative Modifications of the Mammalian Intestinal Microbio
www.nature.com/scientificreports OPEN Schistosoma mansoni infection is associated with quantitative and qualitative modifcations of the Received: 4 April 2018 Accepted: 20 July 2018 mammalian intestinal microbiota Published: xx xx xxxx Timothy P. Jenkins1, Laura E. Peachey1, Nadim J. Ajami 2, Andrew S. MacDonald 3, Michael H. Hsieh4,5,6, Paul J. Brindley7, Cinzia Cantacessi 1 & Gabriel Rinaldi7,8 In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fuctuations in the composition of the gut microbial fora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a signifcant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-infected mice when compared to uninfected control animals. These data support a role of the mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves as a foundation for the design of mechanistic studies to unravel the complex relationships amongst parasitic helminths, gut microbiota, pathophysiology of infection and host immunity. Schistosomiasis, a major neglected tropical disease, is considered the most problematic of the human helmin- thiases in terms of morbidity and mortality1. -
Supplemental Material
Online Supporting Material SUPPLEMENTAL MATERIAL A taxonomic signature of obesity in a large study of American adults Brandilyn A. Peters,1 Jean A. Shapiro,2 Timothy R. Church,3 George Miller,4,5,6 Chau Trinh-Shevrin,1,6 Elizabeth Yuen,7 Charles Friedlander,7 Richard B. Hayes,1,6 Jiyoung Ahn1,6 1Department of Population Health, New York University School of Medicine, New York, NY, USA 2Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA 3Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA 4Departments of Surgery and 5Cell Biology, New York University School of Medicine, New York, NY, USA 6NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA 7Kips Bay Endoscopy Center, New York, NY, USA Online Supporting Material Supplemental Figure 1. (a, b, c) Richness, Shannon diversity index, and Evenness rarefaction curves in healthy-weight, overweight, obese class I, and obese class II-III participants. Rarefaction curves were estimated by taking the mean of the α-diversity indices averaged for each participant over 100 iterations at each rarefaction sequencing depth. (d) Principal coordinate analysis of the weighted UniFrac distances. Shapes outlined in black represent centroids for healthy-weight, overweight, and obese participants. (e) Partial constrained analysis of principal coordinates (CAP) based on the weighted UniFrac distance. BMI category was the constraining variable, and sex, age, polyp status, and study were conditioning variables. Online Supporting Material Supplemental Figure 2. (a) Boxplots of richness (number of OTUs) in relation to BMI in subgroups by study, polyp status, and sex. -
Gut Microbiota Composition in Relation to Intake of Added Sugar, Sugar‑Sweetened Beverages and Artifcially Sweetened Beverages in the Malmö Ofspring Study
European Journal of Nutrition https://doi.org/10.1007/s00394-020-02392-0 ORIGINAL CONTRIBUTION Gut microbiota composition in relation to intake of added sugar, sugar‑sweetened beverages and artifcially sweetened beverages in the Malmö Ofspring Study Stina Ramne1 · Louise Brunkwall1 · Ulrika Ericson1 · Nicola Gray2 · Gunter G. C. Kuhnle3 · Peter M. Nilsson1 · Marju Orho‑Melander1 · Emily Sonestedt1 Received: 22 April 2020 / Accepted: 21 September 2020 © The Author(s) 2020 Abstract Purpose It has been suggested that a high intake of sugar or sweeteners may result in an unfavorable microbiota composition; however, evidence is lacking. Hence, in this exploratory epidemiological study, we aim to examine if intake of added sugar, sugar-sweetened beverages (SSBs) or artifcially sweetened beverages (ASBs) associate with the gut microbiota composition. Methods Participants (18–70 years) in the Malmö Ofspring Study have provided blood, urine, and fecal samples and com- pleted both web-based 4 day food records and short food frequency questionnaires. The gut microbiota was assessed by 16S rRNA sequencing, processed in QIIME and matched to Greengenes (v.13.8), giving 64 included genera after fltering. Intake of added sugar (n = 1371) (also supported by the overnight urinary sugar biomarker in a subgroup n = 577), SSBs (n = 1086) and ASBs (n = 1085) were examined as exposures in negative binomial regressions. Results Various genera nominally associated with intake of added sugar, SSBs, and ASBs. Only the negative association between SSB intake and Lachnobacterium remained signifcant after multiple testing correction. A positive association between SSB intake and the Firmicutes:Bacteroidetes ratio was also observed. Conclusion In this wide population, the cross-sectional associations between added sugar and sweet beverage intake and the gut microbiota are modest, but the results suggest that SSB intake is associated negatively with the genus Lachnobacterium and positively with the Firmicutes:Bacteroidetes ratio. -
Ketogenic Diet Enhances Neurovascular Function with Altered
www.nature.com/scientificreports OPEN Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy Received: 14 September 2017 Accepted: 17 April 2018 mice Published: xx xx xxxx David Ma1, Amy C. Wang1, Ishita Parikh1, Stefan J. Green 2, Jared D. Hofman1,3, George Chlipala2, M. Paul Murphy1,4, Brent S. Sokola5, Björn Bauer5, Anika M. S. Hartz1,3 & Ai-Ling Lin1,3,6 Neurovascular integrity, including cerebral blood fow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had signifcant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively benefcial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-infammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our fndings suggest that KD intervention started in the early stage may enhance brain vascular function, increase benefcial gut microbiota, improve metabolic profle, and reduce risk for AD. -
Characterization of the Fecal Microbiome in Cats with Inflammatory Bowel Disease Or Alimentary Small Cell Lymphoma
www.nature.com/scientificreports OPEN Characterization of the fecal microbiome in cats with infammatory bowel disease or alimentary small cell lymphoma Sina Marsilio1,2*, Rachel Pilla1, Benjamin Sarawichitr1, Betty Chow 3,6, Steve L. Hill3,7, Mark R. Ackermann4, J. Scot Estep5, Jonathan A. Lidbury1, Joerg M. Steiner1 & Jan S. Suchodolski1 Feline chronic enteropathy (CE) is a common gastrointestinal disorder in cats and mainly comprises infammatory bowel disease (IBD) and small cell lymphoma (SCL). Both IBD and SCL in cats share features with chronic enteropathies such as IBD and monomorphic epitheliotropic intestinal T-cell lymphoma in humans. The aim of this study was to characterize the fecal microbiome of 38 healthy cats and 27 cats with CE (13 cats with IBD and 14 cats with SCL). Alpha diversity indices were signifcantly decreased in cats with CE (OTU p = 0.003, Shannon Index p = 0.008, Phylogenetic Diversity p = 0.019). ANOSIM showed a signifcant diference in bacterial communities, albeit with a small efect size (P = 0.023, R = 0.073). Univariate analysis and LEfSE showed a lower abundance of facultative anaerobic taxa of the phyla Firmicutes (families Ruminococcaceae and Turicibacteraceae), Actinobacteria (genus Bifdobacterium) and Bacteroidetes (i.a. Bacteroides plebeius) in cats with CE. The facultative anaerobic taxa Enterobacteriaceae and Streptococcaceae were increased in cats with CE. No signifcant diference between the microbiome of cats with IBD and those with SCL was found. Cats with CE showed patterns of dysbiosis similar to those in found people with IBD. Feline chronic enteropathy (CE) is common in elderly cats and is defned as the presence of clinical signs of gastrointestinal disease for more than 3 weeks in the absence of infectious intestinal diseases (e.g., parasites) and extraintestinal causes (e.g., renal disease, hyperthyroidism)1. -
The Interplay Between Host Genetics and the Gut Microbiome Reveals Common
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888313; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 The interplay between host genetics and the gut microbiome reveals common 2 and distinct microbiome features for human complex diseases 3 Fengzhe Xu1#, Yuanqing Fu1#, Ting-yu Sun2, Zengliang Jiang1,3, Zelei Miao1, Menglei 4 Shuai1, Wanglong Gou1, Chu-wen Ling2, Jian Yang4,5, Jun Wang6*, Yu-ming Chen2*, 5 Ju-Sheng Zheng1,3,7* 6 #These authors contributed equally to the work 7 1 School of Life Sciences, Westlake University, Hangzhou, China. 8 2 Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department 9 of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 10 China. 11 3 Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 12 Hangzhou, China. 13 4 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 14 Australia. 15 5 Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 16 325027, China 17 6 CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of 18 Microbiology, Chinese Academy of Sciences, Beijing, China. 19 7 MRC Epidemiology Unit, University of Cambridge, Cambridge, UK. 20 21 Short title: Interplay between and host genetics and gut microbiome 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888313; this version posted January 6, 2020.