Investigating the Roles of IRF6 in Epithelial Maturation, Craniofacial Development, and Orofacial Cleft Pathogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Roles of IRF6 in Epithelial Maturation, Craniofacial Development, and Orofacial Cleft Pathogenesis Investigating the Roles of IRF6 in Epithelial Maturation, Craniofacial Development, and Orofacial Cleft Pathogenesis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049982 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA !"#$%&'()&'"(*&+$*,-.$%*-/*!"#$*'"*01'&+$.').*2)&34)&'-"5*64)"'-/)7').*8$#$.-19$"&5* )":*;4-/)7').*6.$/&*<)&+-($"$%'%* * * * =*:'%%$4&)&'-"*14$%$"&$:* >?* 0:@)4:*A'"(*B)"(*C'* * * * &-* D+$*8'#'%'-"*-/*2$:'7).*E7'$"7$%* '"*1)4&').*/3./'..9$"&*-/*&+$*4$F3'4$9$"&%* /-4*&+$*:$(4$$*-/* 8-7&-4*-/*<+'.-%-1+?* '"*&+$*%3>G$7&*-/* A'-.-('7).*)":*A'-9$:'7).*E7'$"7$%* * * * B)4#)4:*H"'#$4%'&?* 6)9>4':($5*2)%%)7+3%$&&%* I$>43)4?*JKLM* * * * * * * * * * * * * N*JKLM*0:@)4:*A'"(*B)"(*C'* =..*4'(+&%*4$%$4#$:O* * 8'%%$4&)&'-"*=:#'%-4P*84O*04'7*6+'$"@$'*C')-** * * ** **0:@)4:*A'"(*B)"(*C'* !"#$%&'()&'"(*&+$*,-.$%*-/*!"#$*'"*01'&+$.').*2)&34)&'-"5*64)"'-/)7').*8$#$.-19$"&5* )":*;4-/)7').*6.$/&*<)&+-($"$%'%* !"#$%&'$( * 6.$/&*.'1*)":Q-4*1).)&$%*R6CQ<S*)4$*7-99-"*7-"($"'&).*9)./-49)&'-"%5*)":*93&)&'-"%*'"*&+$* &4)"%74'1&'-"*/)7&-4*!"#$%)4$*&+$*9-%&*%'("'/'7)"&*($"$&'7*7-"&4'>3&-4%*&-*7.$/&*1)&+-($"$%'%O*!"#$%'%* )*9)%&$4*4$(3.)&-4*-/*$1'&+$.').*9)&34)&'-"*)":*'%*$T14$%%$:*'"*&+$*-4).*$1'&+$.'39*+?1-&+$%'U$:*&-* 1.)?*74'&'7).*%'(").'"(*/3"7&'-"%*:34'"(*1).)&-($"$%'%O*8$%1'&$*&+$*'91-4&)"7$*-/*!"#$%'"*74)"'-/)7').* :$#$.-19$"&5*937+*%&'..*4$9)'"%*3"V"-@"*)>-3&*'&%*>'-.-('7).*/3"7&'-"O*D-*7-91.$9$"&*&+$*%&3:'$%* -/*6CQ<*1)&+-($"$%'%*'"*-&+$4*9-:$.%5*@$*3%$:*6,!E<,*&-*14-:37$*)*U$>4)/'%+*&'($%"3..*9-:$.*)":* :'%7-#$4$:*&+)&*9)&$4").W"3..*&'($)*)%$9>4?-%*:'%1.)?$:*$9>4?-"'7*.$&+).'&?*:3$*&-*1$4':$49*431&34$O* D+$*U$>4)/'%+*1$4':$49*+)%*>$$"*14$#'-3%.?*3%$:*)%*)*9-:$.*-/*&+$*9)99).')"*-4).*$1'&+$.'39*@'&+* 7-"%$4#)&'-"*-/*>-&+*9-41+-.-('$%*)":*9-.$73.)4*1)&+@)?%O*83$*&-*%&4-"(*74-%%W%1$7'$%*%$F3$"7$* 7-"%$4#)&'-"*'"*!"#$5*$'&+$4*U$>4)/'%+*-4*+39)"*!"#$%7-3.:*4$%73$*&+$*9)&$4").W"3..*&'($)*)*1$4':$49* 431&34$*1+$"-&?1$O*D+'%*)..-@$:*3%*&-*&$%&*&+$*14-&$'"*/3"7&'-"%*-/*!"#$%9'%%$"%$*($"$*#)4')"&%*-/* 3"V"-@"*%'("'/'7)"7$*/4-9*6CQ<*1)&'$"&%5*/3"7&'-")..?*7)&$(-4'U$*&+$9*>?*4$%':3).*14-&$'"*/3"7&'-"5* )":*14-#':$*>'-.-('7).*:)&)*&-*7-91.$9$"&*&+$*&4):'&'-").*%&)&'%&'7).Q7-913&)&'-").*)114-)7+$%*/-4* )*) #)4')"&*1)&+-($"'7'&?*)%%'("9$"&O*X$T&5*>$7)3%$*&+$*$)4.?*&'($ %1$4':$49*431&34$*14$7.3:$:*%&3:'$%* -/*1-&$"&').*&'($%/3"7&'-"%*.)&$4*:34'"(*74)"'-/)7').*:$#$.-19$"&5*@$*$91.-?$:*)*"-#$.*-1&-($"$&'7* ($"$*$T14$%%'-"*%?%&$9*@'&+*:-9'")"&W"$()&'#$*!4/Y*&-*%1)&'-&$91-4)..?*'"+'>'&*!4/Y*/3"7&'-"%*:34'"(* 1).)&-($"$%'%O*D+$*4$%3.&%*4$#$).$:*)*%&4'V'"(*-4-/)7').*7.$/&*1+$"-&?1$*'"*&+$*U$>4)/'%+*9-:$.5*&+$* 9-.$73.)4*9$7+)"'%9%*-/*@+'7+*)4$*7344$"&.?*>$'"(*'"#$%&'()&$:O*I'")..?5*-34*&'($)*)%9-:$.*14-#':$:* )"*-11-4&3"'&?*&-*$.37':)&$*!4/Y*:-@"%&4$)9%&4)"%74'1&'-").*&)4($&%5*$"+)"7$*-34*3":$4%&)":'"(*-/* -4-/)7').*7.$/&*1)&+-($"$%'%5*)":*':$"&'/?*1-&$"&').*"-:$%*/-4*'"&$4#$"&'-"*&-*14$#$"&*6CQ<%*&+%,-.'/O* '''* * 6+!<W%$F*)":*9,X=W%$F*@$4$*$91.-?$:*&-*7-91)4$*@'.:*&?1$*&-*9)&$4").W"3..*&'($)*)*$9>4?-%*)":* ':$"&'/?*!4/Y*&4)"%74'1&'-").*&)4($&*($"$%*%'("'/'7)"&.?*:-@"4$(3.)&$:*'"*&+$*)>%$"7$*-/*&'($%/3"7&'-"%* :34'"(*U$>4)/'%+*:$#$.-19$"&O*=").?%$%*-/*&+$*7)":':)&$*&)4($&*($"$%*+)#$*>$(3"*&-*4$#$).*"-#$.* )%1$7&%*-/*!4/Y*>'-.-('7).*/3"7&'-"*)":*:$#$.-19$"&).*1)&+@)?%*14$#'-3%.?*3"7+)4)7&$4'U$:*:34'"(* 1).)&-($"$%'%O*D+$%$*1)&+@)?%*7-3.:*4$14$%$"&*?$&*3"$T1.-4$:*9$7+)"'%9%*>?*@+'7+*!"#$*'"*&+$* 9)99).')"*$9>4?-"'7*-4).*$1'&+$.'39*4$(3.)&$%*$1'&+$.').*9)&34)&'-"*)":*$1'&+$.').W9$%$"7+?9).* '"&$4)7&'-"%*:34'"(*74)"'-/)7').*:$#$.-19$"&O* * * * * * '#* * )&"*+(,-(.,/$+/$#(( 0+/+%&*(1/$%,23'$4,/#( * 6.$/&*.'1*)":Q-4*1).)&$*14$#).$"7$*)":*'"7':$"7$ZZZZZZZZZZZZZZZZZZL* * 8'#'%'-"*-/*6CQ<*'"&-*%?":4-9'7*)":*"-"%?":4-9'7*7)%$%ZZZZZZZZZZZZZOOO[* * !"#$%)%*&+$*($"$*9-%&*7-99-".?*93&)&$:*'"*+39)"*6CQ<*1)&'$"&%ZZZZZZZZZOOOM* 2)99).')"*74)"'-/)7').*:$#$.-19$"&*14-7$%%*-#$4#'$@OOOZZZZZZZZZZZZZLJ* * 2-41+-($"$%'%*)":*/3%'-"*-/*/)7').*14-9'"$"7$%ZZZZZZZZZZZZZZZZZL\* * !"#$*'%*)*9)%&$4*4$(3.)&-4*-/*$1'&+$.').*:'//$4$"&')&'-"*)":*9)&34)&'-"OOZOZZZZZZOOJK* * !"#$%($"$*4$(3.)&'-"*)":*14-&$'"*'"&$4)7&'-"%*'"*&+$*$9>4?-"'7*$1'&+$.'39ZZZZZZOJJ* * ]$>4)/'%+*)%*)*9-:$.*/-4*9)99).')"*74)"'-/)7').*:$#$.-19$"&ZZZZZZZZZZZJ[* .5&6$+%(78(9#$&"*4#5:+/$(,-(;+"%&-4#5(!"#$%<,2+*#(=#4/>(.?1@A?B.&#C(0+/,:+(924$4/>( * !"&4-:37&'-"%* * * 6-"%$4#)&'-"*-/*!"#$*($"$*%&437&34$*)":*14-&$'"*%$F3$"7$*'"*U$>4)/'%+ZZZZ^L* * * 2)&$4").*&4)"%74'1&%*)":*$)4.?*U$>4)/'%+*$9>4?-"'7*:$#$.-19$"&ZZZZZZOOO^^* * * ]$>4)/'%+*$9>4?-"'7*1$4':$49*)%*)*9-:$.*-/*&+$*9)99).')"*-4).*$1'&+$.'39ZZ^\* * * _$"$4)&'-"*-/*U$>4)/'%+*&'($%9-:$.%*3%'"(*6,!E<,W6)%`*($"-9$*$:'&'"(OZZZ^M* * * E1)&'-&$91-4).*($"$*$T14$%%'-"*1)&&$4"%*-/*&'($%'"*U$>4)/'%+ZZOZZZZZZOO[K* * 0T1$4'9$"&).*,$%3.&%* * * E1)&'-&$91-4).*$T14$%%'-"*1)&&$4"%*-/*!4/Y*'"*U$>4)/'%+*>?*!B6ZOOOZOZZZOOOOOOO[J* * * =&&$91&$:*($"$4)&'-"*-/*)*U$>4)/'%+*&'($%4$1-4&$4*.'"$*3%'"(*6,!E<,*)":*B8,ZO[[* * * _$"$4)&'-"*-/*)*D-.J*&4)"%($"'7*U$>4)/'%+*&'($%/.3-4$%7$"&*4$1-4&$4*.'"$ZOOOOOOOOOOOOO[Y* * * 6,!E<,W6)%`*9$:')&$:*&'($%93&)($"$%'%*'"*U$>4)/'%+ZZZZZZZZZZZO[M* * * 2-.$73.)4*7+)4)7&$4'U)&'-"%*-/*&+$*U$>4)/'%+*&'($*6,!E<,*)..$.$ZZZZZZZOO\K* * * 2-.$73.)4*4$%73$*-/*&'($%1)&+@)?*($"$%*>?*U$>4)/'%+*)":*+39)"*!"#$ZZZOOZ\^* * * <+$"-&?1'7*4$%73$*-/*1$4':$49*431&34$*>?*U$>4)/'%+*)":*+39)"*!"#$ZZZZOOO\\* #* * 8'%73%%'-"%* * * ]$>4)/'%+*1$4':$49*)%*)*9-:$.*-/*9)99).')"*-4).*$1'&+$.'39*)":* 4$F3'4$9$"&%*-/*9)&$4").*&'($%'"*$1'>-.?*)":*74)"'-/)7').*:$#$.-19$"&ZOOZOZZ\Y* .5&6$+%(D8(E3/'$4,/&*(0+/,:4'#(!/&*F#4#(,-(?&%+(&'($%G&%4&/$#(=#4/>(&(;+"%&-4#5(<,2+*( !"&4-:37&'-"%* * * 6+)..$"($%*'"*&+$*':$"&'/'7)&'-"*)":*7+)4)7&$4'U)&'-"*-/*+39)"*!"#$*#)4')"&%OOZOYK* * * I3"7&'-").*)%%$%%9$"&*-/*+39)"*!"#$*9'%%$"%$*#)4')"&%*'"*U$>4)/'%+ZZOZZOYL* * 0T1$4'9$"&).*,$%3.&%* * * <-.?<+$"WJ*)":*E!ID*14$:'7&'-"%*-/*!"#$%#)4')"&*14-&$'"*/3"7&'-"* * * :-*"-&*)7734)&$.?*4$/.$7&*)>'.'&?*&-*4$%73$*U$>4)/'%+*1$4':$49*4$%73$ZZZZZOOYJ* * * 8-%)($*&'&4)&'-"%*7)"*:'//$4$"&')&$*/3"7&'-").*7)&$(-4'$%*-/*!"#$*#)4')"&%ZZZOOYY* * * B39)"*!"#$%#)4')"&%*)4$*7)1)>.$*-/*4$%&-4'"(*U$>4)/'%+*:$#$.-19$"&ZOOOOOOOOOOOOOaK* * 8'%73%%'-"%* * * 6+)..$"($%*'"*%&)&'%&'7).*)":*7-913&)&'-").*)").?%$%*-/*4)4$*($"$*#)4')"&%ZZOOOaL* * * <+$"-&?1'7*4$%73$*-/*9)&$4").W"3..*&'($)*)*1$4':$49*431&34$*>?*!"#$*#)4')"&%ZZOOaJ* .5&6$+%(H8(!/&*F#4#(,-($5+(A,$+/$4&*(A,#$B964",*F(?,*+#(,-(!"#$%4/(.%&/4,-&'4&*(I+J+*,6:+/$( (( (((((((3#4/>(K6$,>+/+$4'#( !"&4-:37&'-"%* * * <-&$"&').*4-.$%*-/*&'($%:34'"(*U$>4)/'%+*1-%&W$1'>-.?*$9>4?-"'7*:$#$.-19$"&ZZOaM* * * 0#).3)&'-"*-/*%1)&'-&$91-4).*($"$*$T14$%%'-"*7-"&4-.*9$&+-:%*'"*U$>4)/'%+ZZOa`* * * 0CJJJ*-1&-($"$&'7*4$(3.)&'-"*-/*%1)&'-&$91-4).*($"$*$T14$%%'-"ZZZOOOZZOOOM^* 0T1$4'9$"&).*,$%3.&%* * * ;1&-($"$&'7*7-"%&437&*:$%'("*)":*.'(+&*)7&'#)&'-"*-/*($"$*$T14$%%'-"ZZZZOOOOM\* * * 8-9'")"&W"$()&'#$*!4/YW0X,*/3%'-"*$T14$%%'-"*9'9'7%*&'($%/3"7&'-").*)>.)&'-"ZOMM* * * !4/Y*/3"7&'-"*'"+'>'&'-"*)&*#)4'-3%*&'9$*1-'"&%*.$):%*&-*:'//$4$"&*1+$"-&?1$%OOZZOO`K* #'* * C'#$*'9)('"(*-/*-1&-($"$&'7*&'($)01"*$9>4?-%*4$#$).%*X66*9'(4)&'-"*:$/$7&%OOOO`^* <4-.'/$4)&'-"*)":*)1-1&-%'%*'"*@'.:*&?1$*#%O*-1&-($"$&'7*&'($)01"*$9>4?-%ZZZ`Y* 8'%73%%'-"%* * * 8-9'")"&W"$()&'#$*!,IY*'"*&+$*/-49%*-/*0X,W/3%'-"*)":*,M[6ZZZZZZZOO`a* * * 8-9'")"&W"$()&'#$*!4/Y*'"+'>'&'-"*9-.$73.)4.?*9'9'7V$:*9)&$4").W"3..*&'($)*)ZZOO``* * * b).':)&'-"*-/*0CJJJ*-1&-($"$&'7*($"$*$T14$%%'-"*7-"&4-.ZZZZZZOOZZZLKK* * * 0//$7&%*-/*!4/Y*'"+'>'&'-"*-"*X66*9'(4)&'-"5*14-.'/$4)&'-"5*%34#'#).*c*:'//$4$"&')&'-"*LKL* * * I)7&-4%*)//$7&'"(*/4-"&-")%).*"$34).*74$%&*7$..*9'(4)&'-"*)":*%34#'#).ZZZZOOOLK^* .5&6$+%(L8(12+/$4-4'&$4,/(,-(I4%+'$(1%-M()%&/#'%46$4,/&*()&%>+$(0+/+#(4/(A+%42+%:(<&$3%&$4,/( !"&4-:37&'-"%* H&'.'&?*-/*6+!<W%$F*/-4*':$"&'/?'"(*:'4$7&*!,IY*&4)"%74'1&'-").*&)4($&*($"$%ZZZLKM* 8'4$7&*!,IY*&4)"%74'1&'-").*&)4($&%*)":*&+$*9'%%'"(*'"+$4'&)"7$*-/*bdEQ<<EZOOLK`* 0T1$4'9$"&).*,$%3.&%* 9,X=W%$F*-/*@'.:*&?1$*#%O*9)&$4").W"3..*&'($)*)*U$>4)/'%+*$9>4?-%ZZZZZZOLLJ* 6+!<W%$F*-/*@'.:*&?1$*#%O*9)&$4").W"3..*&'($)*)*U$>4)/'%+*$9>4?-%ZZZZZZZLL\* <4'-4'&'U)&'-"*-/*:'4$7&*!4/Y*&4)"%74'1&'-").*&)4($&*($"$%*/-4*/34&+$4*'"#$%&'()&'-"OOOLLY* !:$"&'/'7)&'-"*-/*6CQ<*1)&'$"&*#)4')"&%*'"*!,IY*&4)"%74'1&'-").*&)4($&*($"$%ZZOOLLM* 2-41+-.'"-*V"-7V:-@"*-/*!4/Y*&4)"%74'1&'-").*&)4($&*($"$%ZZZOZZZZZOOOLL`* 6,!E<,W6)%`*($"$*$:'&'"(*-/*7)":':)&$*!4/Y*&4)"%74'1&'-").*&)4($&*($"$%ZOOZOLJL* E1)&'-&$91-4).*$T14$%%'-"*-/*!4/Y*&4)"%74'1&'-").*&)4($&*.2'34*'"*U$>4)/'%+ZZOOLJJ* 2-3%$*$9>4?-"'7*1).)&).*%+$./*0%41L*$T14$%%'-"*)":*02'34)*)*1+$"-&?1$%ZZOLJ[* 8'%73%%'-"%* 02'34*:4'#$%*).&$4")&'#$*%1.'7'"(*-/*/'>4->.)%&*(4-@&+*/)7&-4*4$7$1&-4%*ZZZZOOLJa* ]$>4)/'%+*.2'34QJ*93&)"&%*)":*1-&$"&').*I_I*'"&$4)7&'-"%ZZZZZZZZZOLJ`* A'-.-('7).*#).':)&'-"*-/*6CQ<*1)&'$"&*#)4')"&%*'"*!,IY%&4)"%74'1&'-").*&)4($&%ZOOOOL^L* !,IY*&4)"%74'1&'-").*&)4($&*#).':)&'-"*'"*7$..*73.&34$5*9-3%$5*)":*U$>4)/'%+ZZOOL^J* #''* * .,/'*3#4,/#* 0%&)>.'%+9$"&*-/*&+$*U$>4)/'%+*9-:$.*/-4*%&3:'$%*-/*!"#$*'"*74)"'-/)7').*:$#$.-19$"&ZL^[* H%)($*-/*U$>4)/'%+*&'($%9-:$.%*&-*>'-.-('7)..?*$#).3)&$*+39)"*#)4')"&*14-&$'"*/3"7&'-"%OL^a* ]$>4)/'%+*)%*)*9-:$.*/-4*+39)"*74)"'-/)7').*:$#$.-19$"&*)":*;I6*1)&+-($"$%'%ZZOL^`* ;1&-($"$&'7*:'%%$7&'-"*-/*1-%&W$1'>-.?*&'($%/3"7&'-"%*'"*74)"'-/)7').*:$#$.-19$"&ZZOOOL[K*
Recommended publications
  • Selective Estrogen Receptor Modulators: Discrimination of Agonistic Versus Antagonistic Activities by Gene Expression Profiling in Breast Cancer Cells
    [CANCER RESEARCH 64, 1522–1533, February 15, 2004] Selective Estrogen Receptor Modulators: Discrimination of Agonistic versus Antagonistic Activities by Gene Expression Profiling in Breast Cancer Cells Jonna Frasor,1 Fabio Stossi,1 Jeanne M. Danes,1 Barry Komm,2 C. Richard Lyttle,2 and Benita S. Katzenellenbogen1 1Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana, Illinois, and 2Women’s Health Research Institute, Wyeth Research, Collegeville, Pennsylvania ABSTRACT tures in these women; however, some detrimental side effects such as an increased risk of endometrial cancer, stroke, and pulmonary embolism Selective estrogen receptor modulators (SERMs) such as tamoxifen are were also associated with tamoxifen treatment (7). Ral was examined in effective in the treatment of many estrogen receptor-positive breast cancers the Multiple Outcomes of Raloxifene Evaluation trial and found to be and have also proven to be effective in the prevention of breast cancer in women at high risk for the disease. The comparative abilities of tamoxifen effective in reducing the incidence of osteoporosis in postmenopausal versus raloxifene in breast cancer prevention are currently being compared in women, as well as the incidence of breast cancer but, unlike tamoxifen, the Study of Tamoxifen and Raloxifene trial. To better understand the actions without the increased risk of endometrial cancer (8, 9). On the basis of the of these compounds in breast cancer, we have examined their effects on the positive outcome of these trials, the Study of Tamoxifen and Raloxifene expression of ϳ12,000 genes, using Affymetrix GeneChip microarrays, with trial was begun in 1999 to directly compare the effects of these two quantitative PCR verification in many cases, categorizing their actions as SERMs, tamoxifen and Ral, in prevention of breast cancer (10, 11).
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
    ARTICLE Received 30 May 2013 | Accepted 21 Nov 2013 | Published 20 Dec 2013 DOI: 10.1038/ncomms3990 Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation Jesse W. Williams1, Melissa Y. Tjota2,3, Bryan S. Clay2, Bryan Vander Lugt4, Hozefa S. Bandukwala2, Cara L. Hrusch5, Donna C. Decker5, Kelly M. Blaine5, Bethany R. Fixsen5, Harinder Singh4, Roger Sciammas6 & Anne I. Sperling1,2,5 Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation. 1 Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 2 Committee on Immunology, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 3 Medical Scientist Training Program, University of Chicago, 924 E.
    [Show full text]
  • The Facebase Consortium: a Comprehensive Program To
    Manuscript Click here to view linked References The FaceBase Consortium: A Comprehensive Program to Facilitate Craniofacial Research Harry Hochheiser1*, Bruce J. Aronow2, Kristin Artinger3, Terri H.Beaty4, James F. Brinkley5, Yang Chai6, David Clouthier3, Michael L. Cunningham7, Michael Dixon8, Leah Rae Donahue9, Scott E. Fraser10, Junichi Iwata6, Mary L. Marazita11, Jeffrey C. Murray12, Stephen Murray9, John Postlethwait13, Steven Potter14, Linda Shapiro5, Richard Spritz15, Axel Visel16, Seth M. Weinberg17 and Paul A. Trainor18*, for the FaceBase Consortium. 1. Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh PA 15232 USA 2. Divisions of Biomedical Informatics and Developmental Biology, Center for Computational Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, CHRF 8504, 3333 Burnet Ave Cincinnati, OH 45229 USA 3. Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 4. Department of Epidemiology, Johns Hopkins University, 615 N. Wolfe Street Baltimore, MD. 21205 USA 5. Department of Computer Science and Engineering, University of Washington, Box 352350 Seattle, WA 98195-2350 USA 6. Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033 7. Seattle Children’s Hospital, 4800 Sand Point Way NE, Seattle, WA 98105 8. Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, and Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, England 1 9. Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 USA 10. Biological Imaging Center Beckman Institute 133, M/C 139-74 California Institute of Technology Pasadena, CA 91125 11.
    [Show full text]
  • Author Manuscript Faculty of Biology and Medicine Publication
    Serveur Académique Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence. Authors: Gordon CT, Attanasio C, Bhatia S, Benko S, Ansari M, Tan TY, Munnich A, Pennacchio LA, Abadie V, Temple IK, Goldenberg A, van Heyningen V, Amiel J, FitzPatrick D, Kleinjan DA, Visel A, Lyonnet S Journal: Human mutation Year: 2014 Aug Volume: 35 Issue: 8 Pages: 1011-20 DOI: 10.1002/humu.22606 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. HHS Public Access Author manuscript Author Manuscript Author ManuscriptHum Mutat Author Manuscript. Author manuscript; Author Manuscript available in PMC 2015 August 01. Published in final edited form as: Hum Mutat. 2014 August ; 35(8): 1011–1020. doi:10.1002/humu.22606. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence Christopher T. Gordon1,#, Catia Attanasio2,3, Shipra Bhatia4, Sabina Benko1,5, Morad Ansari4, Tiong Y. Tan6, Arnold Munnich1,7, Len A. Pennacchio2,8, Véronique Abadie9, I. Karen Temple10, Alice Goldenberg11, Veronica van Heyningen4, Jeanne Amiel1,7, David FitzPatrick4, Dirk A. Kleinjan4, Axel Visel2,8,12, and Stanislas Lyonnet1,7,# 1Université Paris Descartes–Sorbonne Paris Cité, Institut Imagine, INSERM U1163, Paris, France.
    [Show full text]
  • Bioinformatic Analysis Reveals the Importance of Epithelial-Mesenchymal Transition in the Development of Endometriosis
    www.nature.com/scientificreports OPEN Bioinformatic analysis reveals the importance of epithelial- mesenchymal transition in the development of endometriosis Meihong Chen1,6, Yilu Zhou2,3,6, Hong Xu4, Charlotte Hill2, Rob M. Ewing2,3, Deming He1, Xiaoling Zhang1 ✉ & Yihua Wang2,3,5 ✉ Background: Endometriosis is a frequently occurring disease in women, which seriously afects their quality of life. However, its etiology and pathogenesis are still unclear. Methods: To identify key genes/ pathways involved in the pathogenesis of endometriosis, we recruited 3 raw microarray datasets (GSE11691, GSE7305, and GSE12768) from Gene Expression Omnibus database (GEO), which contain endometriosis tissues and normal endometrial tissues. We then performed in-depth bioinformatic analysis to determine diferentially expressed genes (DEGs), followed by gene ontology (GO), Hallmark pathway enrichment and protein-protein interaction (PPI) network analysis. The fndings were further validated by immunohistochemistry (IHC) staining in endometrial tissues from endometriosis or control patients. Results: We identifed 186 DEGs, of which 118 were up-regulated and 68 were down-regulated. The most enriched DEGs in GO functional analysis were mainly associated with cell adhesion, infammatory response, and extracellular exosome. We found that epithelial-mesenchymal transition (EMT) ranked frst in the Hallmark pathway enrichment. EMT may potentially be induced by infammatory cytokines such as CXCL12. IHC confrmed the down-regulation of E-cadherin (CDH1) and up-regulation of CXCL12 in endometriosis tissues. Conclusions: Utilizing bioinformatics and patient samples, we provide evidence of EMT in endometriosis. Elucidating the role of EMT will improve the understanding of the molecular mechanisms involved in the development of endometriosis. Endometriosis is a frequently occurring gynaecological disease characterised by chronic pelvic pain, dysmenor- rhea and infertility1.
    [Show full text]
  • Facial Genetics: a Brief Overview
    fgene-09-00462 October 16, 2018 Time: 12:3 # 1 REVIEW published: 16 October 2018 doi: 10.3389/fgene.2018.00462 Facial Genetics: A Brief Overview Stephen Richmond1*, Laurence J. Howe2,3, Sarah Lewis2,4, Evie Stergiakouli2,4 and Alexei Zhurov1 1 Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom, 2 MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom, 3 Institute of Cardiovascular Science, University College London, London, United Kingdom, 4 School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom Historically, craniofacial genetic research has understandably focused on identifying the causes of craniofacial anomalies and it has only been within the last 10 years, that there has been a drive to detail the biological basis of normal-range facial variation. This initiative has been facilitated by the availability of low-cost hi-resolution three- dimensional systems which have the ability to capture the facial details of thousands of individuals quickly and accurately. Simultaneous advances in genotyping technology have enabled the exploration of genetic influences on facial phenotypes, both in the Edited by: present day and across human history. Peter Claes, KU Leuven, Belgium There are several important reasons for exploring the genetics of normal-range variation Reviewed by: in facial morphology. Hui-Qi Qu, Children’s Hospital of Philadelphia, - Disentangling
    [Show full text]
  • An Etiologic Regulatory Mutation in IRF6 with Loss- and Gain-Of-Function Effects
    Human Molecular Genetics, 2014, Vol. 23, No. 10 2711–2720 doi:10.1093/hmg/ddt664 Advance Access published on January 16, 2014 An etiologic regulatory mutation in IRF6 with loss- and gain-of-function effects Walid D. Fakhouri1,{, Fedik Rahimov4,{, Catia Attanasio5, Evelyn N. Kouwenhoven6, Renata L. Ferreira De Lima4, Temis Maria Felix8, Larissa Nitschke1, David Huver1, Julie Barrons1, Youssef A. Kousa2, Elizabeth Leslie4, Len A. Pennacchio5, Hans Van Bokhoven6,7, Axel Visel5, Huiqing Zhou6,9, Jeffrey C. Murray4 and Brian C. Schutte1,3,∗ Downloaded from https://academic.oup.com/hmg/article/23/10/2711/614966 by guest on 05 October 2021 1Microbiology and Molecular Genetics, 2Department of Biochemistry and Molecular Biology and 3Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA 4Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA 5Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences and 7Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands 8Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil 9Faculty of Science, Department of Molecular Developmental Biology, Radboud University Nijmegen, Nijmegen, The Netherlands Received September 25, 2013; Revised December 7, 2013; Accepted December 23, 2013 DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons.
    [Show full text]
  • Molecular Anatomy of Palate Development
    RESEARCH ARTICLE Molecular Anatomy of Palate Development Andrew S. Potter, S. Steven Potter* Cincinnati Children’s Medical Center, Division of Developmental Biology, 3333 Burnet Ave., Cincinnati, OH, 45229, United States of America * [email protected] Abstract The NIH FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine pal- ate. We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including both medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously OPEN ACCESS published gene expression data for the developing palate. In addition selected immunostain Citation: Potter AS, Potter SS (2015) Molecular validations were carried out. In conclusion, this report provides an RNA-Seq based atlas of Anatomy of Palate Development. PLoS ONE 10(7): gene expression patterns driving palate development at microanatomic resolution. This e0132662. doi:10.1371/journal.pone.0132662 FACEBASE resource is designed to promote discovery by the craniofacial research Editor: Peter Hohenstein, The Roslin Institute, community.
    [Show full text]
  • THE OLD and NEW FACE of CRANIOFACIAL RESEARCH: How Animal Models Inform Human Craniofacial Genetic and Clinical Data
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Dev Biol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 July 15. Published in final edited form as: Dev Biol. 2016 July 15; 415(2): 171–187. doi:10.1016/j.ydbio.2016.01.017. THE OLD AND NEW FACE OF CRANIOFACIAL RESEARCH: How animal models inform human craniofacial genetic and clinical data Eric Van Otterloo, Trevor Williams, and Kristin B. Artinger Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA Kristin B. Artinger: [email protected] Abstract The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting “animal to man” approaches: that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight “man to animal” approaches, including the current use of animal models to test the function of candidate human disease variants.
    [Show full text]
  • Novel IRF6 Mutations in Honduran Van Der Woude Syndrome Patients
    MOLECULAR MEDICINE REPORTS 4: 237-241, 2011 Novel IRF6 mutations in Honduran Van Der Woude syndrome patients ANDREW C. BIRKELAND1*, YUNA LARRABEE1*, DAVID T. KENT7, CARLOS FLORES8, GLORIA H. SU2,3, JOSEPH H. LEE4,6 and JOSEPH HADDAD Jr2,5 1Columbia University College of Physicians and Surgeons; Departments of 2Otolaryngology/Head and Neck Surgery, 3Pathology, 4Epidemiology and 5Pediatric Otolaryngology; 6Gertrude H Sergievsky Center and Taub Institute, Columbia University Medical Center, New York, NY; 7Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 8Department of Plastic Surgery, Hospital Escuela, University of Honduras, Tegucigalpa, Honduras Received October 26, 2010; Accepted December 29, 2010 DOI: 10.3892/mmr.2011.423 Abstract. Van der Woude syndrome (VWS) is an autosomal Introduction dominant inherited disease characterized by lower lip pits, cleft lip and/or cleft palate. Missense, nonsense and frameshift Cleft lip with or without cleft palate (CL/P) is a common mutations in IRF6 have been revealed to be responsible for congenital malformation, presenting in 1/500 to 1/2000 births, VWS in European, Asian, North American and Brazilian with increased prevalence in Hispanic, Native American populations. However, the mutations responsible for VWS and Chinese populations. CL/P occurs in non-syndromic or have not been studied in Central American populations. Here, syndromic forms, with non-syndromic forms constituting the we investigated the role of IRF6 in patients with VWS in a majority (~70%) of cases. Of the syndromic forms of CL/P, previously unstudied Honduran population. IRF6 mutations Van der Woude syndrome (VWS; OMIM 119300) is the most were identified in four out of five VWS families examined, common.
    [Show full text]
  • ACE2 and FURIN Supplemental Figure S1
    ACE2 and FURIN Supplemental Figure S1. Expression in human cells, tissues, and organs RNA-Seq Expression Data from GTEx (53 Tissues, 570 Donors) RNA-Seq Expression Data from GTEx (53 Tissues, 570 Donors) RNA-Seq Expression Data from GTEx (53 Tissues, 570 Donors) RNA-Seq Expression Data from GTEx (53 Tissues, 570 Donors) Jensen TISSUES ARCHS4 Human Tissues ACE2 and FURIN Supplemental Figure S2. Effects of viral challenges on expression Virus Perturbations from GEO up Profile: FURIN expression in peripheral blood mononuclear cells (PBMCs) GDS1028 / 201945_at Title Severe acute respiratory syndrome expression profile Organism Homo sapiens FURIN expression in peripheral blood mononuclear cells (PBMCs) p = 0.002 Sample Title Value GSM30361 N1 264.2 GSM30362 N2 241.7 GSM30363 N3 298.1 GSM30364 N4 268.5 GSM30365 S1 295.5 GSM30366 S2 464 GSM30367 S3 309.7 GSM30368 S4 564.1 GSM30369 S5 674.4 GSM30370 S6 588 GSM30371 S7 830.2 GSM30372 S8 818.8 GSM30373 S9 385.1 GSM30374 S10 771.2 ACE2 and FURIN Supplemental Figure S3. Effects of common human diseases on expression changes Distinct patterns of diseases associated with increased expression of the ACE2 and FURIN genes Disease Perturbations from GEO up Distinct patterns of diseases associated with expression changes of the ACE2 and FURIN genes DisGeNET Profile: ACE2 expression GDS4855 / 222257_s_at Title Pandemic and seasonal H1N1 influenza virus infections of bronchial epithelial cells in vitro Organism Homo sapiens Effects of pandemic and seasonal H1N1 influenza virus infections on ACE2 expression
    [Show full text]