Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective Estrogen Receptor Modulators: Discrimination of Agonistic Versus Antagonistic Activities by Gene Expression Profiling in Breast Cancer Cells
[CANCER RESEARCH 64, 1522–1533, February 15, 2004] Selective Estrogen Receptor Modulators: Discrimination of Agonistic versus Antagonistic Activities by Gene Expression Profiling in Breast Cancer Cells Jonna Frasor,1 Fabio Stossi,1 Jeanne M. Danes,1 Barry Komm,2 C. Richard Lyttle,2 and Benita S. Katzenellenbogen1 1Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana, Illinois, and 2Women’s Health Research Institute, Wyeth Research, Collegeville, Pennsylvania ABSTRACT tures in these women; however, some detrimental side effects such as an increased risk of endometrial cancer, stroke, and pulmonary embolism Selective estrogen receptor modulators (SERMs) such as tamoxifen are were also associated with tamoxifen treatment (7). Ral was examined in effective in the treatment of many estrogen receptor-positive breast cancers the Multiple Outcomes of Raloxifene Evaluation trial and found to be and have also proven to be effective in the prevention of breast cancer in women at high risk for the disease. The comparative abilities of tamoxifen effective in reducing the incidence of osteoporosis in postmenopausal versus raloxifene in breast cancer prevention are currently being compared in women, as well as the incidence of breast cancer but, unlike tamoxifen, the Study of Tamoxifen and Raloxifene trial. To better understand the actions without the increased risk of endometrial cancer (8, 9). On the basis of the of these compounds in breast cancer, we have examined their effects on the positive outcome of these trials, the Study of Tamoxifen and Raloxifene expression of ϳ12,000 genes, using Affymetrix GeneChip microarrays, with trial was begun in 1999 to directly compare the effects of these two quantitative PCR verification in many cases, categorizing their actions as SERMs, tamoxifen and Ral, in prevention of breast cancer (10, 11). -
IFN-Α Wakes up Sleeping Hematopoietic Stem Cells
NEWS AND VIEWS calcium consumption does not seem to have without increasing the risk of coronary heart 7. Aoki, K. et al. Ann. Epidemiol. 15, 598–606 (2005). such an effect. How to optimize calcium sup- disease, which has been associated with cal- 8. Langhans, N. et al. Gastroenterology 112, 280–286 13 plements for human health deserves further cium supplementation . (1997). investigation. 9. Recker, R.R. N. Engl. J. Med. 313, 70–73 (1985). 10. Yang, Y.-X. et al. J. Am. Med. Assoc. , 2947– Maybe it’s time to determine whether low- 1. Zaidi, M. Nat. Med. 13, 791–801 (2007). 296 2. Del Fattore, A. et al. Bone 42, 19–29 (2008). 2953 (2006). fat milk–based drinks taken as an alternative 3. Sobacchi, C. et al. Hum. Mol. Genet. 10, 1767–1773 11. Collazo-Clavell, M.L., Jimenez, A., Hodgson, S.F. & to the soda so frequently consumed, especially (2001). Sarr, M.G. Endocr. Pract. 10, 195–198 (2004). 4. Amling, M. et al. Nat. Med. 15, 674–681 (2009). 12. Bo-Linn, G.W. et al. J. Clin. Invest. 73, 640–647 during the early adolescent years, can attain 5. Straub, D.A. Nutr. Clin. Pract. 22, 286–296 (2007). (1984). the noble goal of keeping bones healthy— 6. Teitelbaum, S.L. Science 289, 1504–1508 (2000). 13. Bolland, M.J. BMJ 336, 262–266 (2008). IFN-α wakes up sleeping hematopoietic stem cells Emmanuelle Passegué & Patricia Ernst The cytokine interferon-α stimulates the turnover and proliferation of hematopoietic cells in vivo (pages 696–700). -
Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines. -
CDP/Cut Is the DNA-Binding Subunit of Histone Gene Transcription Cell
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11516-11521, October 1996 Biochemistry CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: A mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F (proliferation/gene expression/cyclin-dependent kinase/tumor suppressor) A. J. VAN WIJNEN*, M. F. vAN GURP*, M. C. DE RIDDER*, C. TUFARELLIt, T. J. LAST*, M. BIRNBAUM*, P. S. VAUGHAN*, A. GIORDANOt, W. KREK§, E. J. NEUFELDt, J. L. STEIN*, AND G. S. STEIN* *Department of Cell Biology, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655; tDivision of Hematology, Enders 720, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115; tInstitute for Cancer Research and Molecular Medicine, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and §Friedrich-Miescher Institut, Postfach 2543, CH-4002 Basel, Switzerland Communicated by Sheldon Penman, Massachusetts Institute of Technology, Cambridge, MA, June 26, 1996 (received for review June 5, 1996) ABSTRACT Transcription of the genes for the human. 2/pl3O, and p107), CDKs, and cyclins A and E (14-17). histone proteins H4, H3,.H2A, H2B, and Hi is activated at the Variation in the composition of E2F containing multiprotein G1/S phase transition of the cell cycle. We have previously complexes may be functionally relevant for the timing and shown that the promoter complex HiNF-D, which interacts extent to which cell cycle controlled genes are activated or with cell cycle control elements in multiple histone genes, repressed. contains the key cell cycle factors cyclin A, CDC2, and a Expression of the genes for the histone proteins H4, H3, retinoblastoma (pRB) protein-related protein. -
Irf1) Signaling Regulates Apoptosis and Autophagy to Determine Endocrine Responsiveness and Cell Fate in Human Breast Cancer
INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER A Dissertation Submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology & Biophysics By Jessica L. Roberts, B.S. Washington, DC September 27, 2013 Copyright 2013 by Jessica L. Roberts All Rights Reserved ii INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER Jessica L. Roberts, B.S. Thesis Advisor: Robert Clarke, Ph.D. ABSTRACT Interferon regulatory factor-1 (IRF1) is a nuclear transcription factor and pivotal regulator of cell fate in cancer cells. While IRF1 is known to possess tumor suppressive activities, the role of IRF1 in mediating apoptosis and autophagy in breast cancer is largely unknown. Here, we show that IRF1 inhibits antiapoptotic B-cell lymphoma 2 (BCL2) protein expression, whose overexpression often contributes to antiestrogen resistance. We proposed that directly targeting the antiapoptotic BCL2 members with GX15-070 (GX; obatoclax), a BH3-mimetic currently in clinical development, would be an attractive strategy to overcome antiestrogen resistance in some breast cancers. Inhibition of BCL2 activity, through treatment with GX, was more effective in reducing the cell density of antiestrogen resistant breast cancer cells versus sensitive cells, and this increased sensitivity correlated with an accumulation of autophagic vacuoles. While GX treatment promoted autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulated. -
PU.1 Cooperates with IRF4 and IRF8 to Suppress Pre-B-Cell Leukemia
Leukemia (2016) 30, 1375–1387 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia SHM Pang1,2, M Minnich3, P Gangatirkar1,2, Z Zheng1, A Ebert3, G Song4, RA Dickins1,2,5, LM Corcoran1,2, CG Mullighan4, M Busslinger3, ND Huntington1,2, SL Nutt1,2 and S Carotta1,2,6 The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~ 50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation. -
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia
cells Article Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia Conelius Ngwa, Abdullah Al Mamun, Yan Xu, Romana Sharmeen and Fudong Liu * Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; [email protected] (C.N.); [email protected] (A.A.M.); [email protected] (Y.X.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +1-713-500-7038; Fax: +1-713-500-0660 Abstract: Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regu- lating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Meth- ods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK40s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. -
Bioinformatic Analysis Reveals the Importance of Epithelial-Mesenchymal Transition in the Development of Endometriosis
www.nature.com/scientificreports OPEN Bioinformatic analysis reveals the importance of epithelial- mesenchymal transition in the development of endometriosis Meihong Chen1,6, Yilu Zhou2,3,6, Hong Xu4, Charlotte Hill2, Rob M. Ewing2,3, Deming He1, Xiaoling Zhang1 ✉ & Yihua Wang2,3,5 ✉ Background: Endometriosis is a frequently occurring disease in women, which seriously afects their quality of life. However, its etiology and pathogenesis are still unclear. Methods: To identify key genes/ pathways involved in the pathogenesis of endometriosis, we recruited 3 raw microarray datasets (GSE11691, GSE7305, and GSE12768) from Gene Expression Omnibus database (GEO), which contain endometriosis tissues and normal endometrial tissues. We then performed in-depth bioinformatic analysis to determine diferentially expressed genes (DEGs), followed by gene ontology (GO), Hallmark pathway enrichment and protein-protein interaction (PPI) network analysis. The fndings were further validated by immunohistochemistry (IHC) staining in endometrial tissues from endometriosis or control patients. Results: We identifed 186 DEGs, of which 118 were up-regulated and 68 were down-regulated. The most enriched DEGs in GO functional analysis were mainly associated with cell adhesion, infammatory response, and extracellular exosome. We found that epithelial-mesenchymal transition (EMT) ranked frst in the Hallmark pathway enrichment. EMT may potentially be induced by infammatory cytokines such as CXCL12. IHC confrmed the down-regulation of E-cadherin (CDH1) and up-regulation of CXCL12 in endometriosis tissues. Conclusions: Utilizing bioinformatics and patient samples, we provide evidence of EMT in endometriosis. Elucidating the role of EMT will improve the understanding of the molecular mechanisms involved in the development of endometriosis. Endometriosis is a frequently occurring gynaecological disease characterised by chronic pelvic pain, dysmenor- rhea and infertility1. -
Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages
Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages This information is current as Anne Lehtonen, Ville Veckman, Tuomas Nikula, Riitta of September 27, 2021. Lahesmaa, Leena Kinnunen, Sampsa Matikainen and Ilkka Julkunen J Immunol 2005; 175:6570-6579; ; doi: 10.4049/jimmunol.175.10.6570 http://www.jimmunol.org/content/175/10/6570 Downloaded from References This article cites 79 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/175/10/6570.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages1 Anne Lehtonen,2* Ville Veckman,* Tuomas Nikula,‡ Riitta Lahesmaa,‡ Leena Kinnunen,† Sampsa Matikainen,* and Ilkka Julkunen* In vitro human monocyte differentiation to macrophages or dendritic cells (DCs) is driven by GM-CSF or GM-CSF and IL-4, respectively. -
In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs. -
Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells
Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells This information is current as Kwan T. Chow, Courtney Wilkins, Miwako Narita, Richard of September 28, 2021. Green, Megan Knoll, Yueh-Ming Loo and Michael Gale, Jr. J Immunol published online 8 October 2018 http://www.jimmunol.org/content/early/2018/10/05/jimmun ol.1800221 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180022 Material 1.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 8, 2018, doi:10.4049/jimmunol.1800221 The Journal of Immunology Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells Kwan T. Chow,*,† Courtney Wilkins,* Miwako Narita,‡ Richard Green,* Megan Knoll,* Yueh-Ming Loo,* and Michael Gale, Jr.* We examined the signaling pathways and cell type–specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor. -
The Molecular Choreography of IRF4 and IRF8 with Immune System Partners
The Molecular Choreography of IRF4 and IRF8 with Immune System Partners 1,2,4 1,3 1 HARINDER SINGH, ELKE GLASMACHER, ABRAHAM B. CHANG, 1 AND BRYAN VANDER LUGT 1Department of Discovery Immunology, Genentech Inc., South San Francisco, California 94080 4Correspondence: [email protected] The transcription factors IRF4 and IRF8 represent immune-specific members of the interferon regulatory family. They play major roles in controlling the development and functioning of innate and adaptive cells. Genes encoding these factors appear to have been coopted by the immune system via gene duplication and divergence of regulatory and protein coding sequences to enable the acquisition of unique molecular properties and functions. Unlike other members of the IRF family, IRF4 and IRF8 do not activate transcription of Type 1 interferon genes or positively regulate interferon-induced gene expression. Instead, they bind to unusual composite Ets-IRF or AP-1-IRF elements with specific Ets or AP-1 family transcription factors, respectively, and regulate the expression of diverse sets of immune response genes in innate as well as adaptive cells. The molecular cloning of interferon regulatory factor et al. 2012). Strikingly, this involves cooperative assembly 8 (IRF8) as interferon consensus sequence-binding pro- of IRF4 with AP-1 heterodimers containing a basic leucine tein (ICSBP) led to the realization that it bound inter- zipper transcription factor, AFT-like (BATF) subunit. feron response sequence elements (ISRE), albeit with This molecular property is shared by IRF8 but not by other low affinity, and antagonized ISRE-mediated gene acti- IRF family members, reminiscent of the molecular specif- vation (Driggers et al.