IFN-Α Wakes up Sleeping Hematopoietic Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

IFN-Α Wakes up Sleeping Hematopoietic Stem Cells NEWS AND VIEWS calcium consumption does not seem to have without increasing the risk of coronary heart 7. Aoki, K. et al. Ann. Epidemiol. 15, 598–606 (2005). such an effect. How to optimize calcium sup- disease, which has been associated with cal- 8. Langhans, N. et al. Gastroenterology 112, 280–286 13 plements for human health deserves further cium supplementation . (1997). investigation. 9. Recker, R.R. N. Engl. J. Med. 313, 70–73 (1985). 10. Yang, Y.-X. et al. J. Am. Med. Assoc. , 2947– Maybe it’s time to determine whether low- 1. Zaidi, M. Nat. Med. 13, 791–801 (2007). 296 2. Del Fattore, A. et al. Bone 42, 19–29 (2008). 2953 (2006). fat milk–based drinks taken as an alternative 3. Sobacchi, C. et al. Hum. Mol. Genet. 10, 1767–1773 11. Collazo-Clavell, M.L., Jimenez, A., Hodgson, S.F. & to the soda so frequently consumed, especially (2001). Sarr, M.G. Endocr. Pract. 10, 195–198 (2004). 4. Amling, M. et al. Nat. Med. 15, 674–681 (2009). 12. Bo-Linn, G.W. et al. J. Clin. Invest. 73, 640–647 during the early adolescent years, can attain 5. Straub, D.A. Nutr. Clin. Pract. 22, 286–296 (2007). (1984). the noble goal of keeping bones healthy— 6. Teitelbaum, S.L. Science 289, 1504–1508 (2000). 13. Bolland, M.J. BMJ 336, 262–266 (2008). IFN-α wakes up sleeping hematopoietic stem cells Emmanuelle Passegué & Patricia Ernst The cytokine interferon-α stimulates the turnover and proliferation of hematopoietic cells in vivo (pages 696–700). The findings hint at a new strategy to treat hematopoietic cancers. At homeostasis, complex regulatory net- a ↑IFN-α ↓IFN-α works maintain the ongoing production of all blood cell types1. During this process, very few hematopoietic stem cells (HSCs) actively STAT1 STAT2 STAT1 STAT2 divide, and most of them remain quiescent in ISGF3 Proliferation IRF9 Proliferation the bone marrow. In response to injury to the IRF2 ISRE hematopoietic system, such as from irradiation ISRE or chemotherapy, HSCs can temporarily exit their quiescent state and generate a larger pool b of progenitor cells, thus increasing production Wild-type HSCs Wild-type HSCs + IFN-α IRF2-deficient HSCs of the needed mature blood cells. Some of the IFN-α ↑IFN-IFN-α IFN-IFN-α proteins that regulate the choice between qui- escence and proliferation in HSCs have already 1,2 been identified . ISGF3ISGF3 ↑ISGF3ISG ↑ISGFISGF33 Two recent studies, one in Nature3 and the IRF2 IRF2 other in this issue of Nature Medicine4, now expand upon this small list of players. The © All rights reserved. 2009 Inc. Nature America, studies show that the cytokine interferon-α DiffDifferentiatingere ng (IFN-α) stimulates the turnover and prolifera- cellc 3,4 tion of HSCs in vivo . IFN-α is an important Self- renewing immune modulator not previously known to cell influence HSC function. This feedback mech- anism between the immune system and the tip of the hematopoietic hierarchy may lead to a Caesar Kim new strategy for leukemia treatment. Figure 1 Role of low-level and induced IFNα signaling within HSCs. (a) Hypothetical target gene linking IFN-α signaling to HSC proliferation. Left, IFN-α–induced proliferation via the ISGF3 complex; Type I interferons (IFN-α and IFN-β) are right, endogenous (uninduced) IFN-α signaling, in which IRF2 acts on the same hypothetical gene produced by a variety of immune and nonim- to constitutively suppress expression. ISRE, IFN-stimulated response element. (b) Outcome of HSC mune cells in response to microbial infections proliferation in the presence of endogenous IFN-α signaling, induced IFN-α signaling (↑IFN-α) and or recognition of tumor cells5. Upon engaging in the IRF2 knockout. Arrows indicate decisions of the stem cell to divide to yield mostly progeny their receptors, type I interferons induce a set committing to differentiate (blue-green cells) versus dividing to self-renew and maintain the stem cell pool (purple cells). Emmanuelle Passegué is at the Eli and Edythe Broad Center of Regeneration Medicine and Stem of genes that inhibit viral replication and clear are still largely unknown, but IFN-α treatment Cell Research, Department of Medicine, Division of infected cells. Because of their ability to regu- of cancer cells generally results in growth arrest Hematology/Oncology, University of California–San late the immune system, recombinant type I by activating negative regulators of prolifera- Francisco, San Francisco, California, USA, and interferons have been used clinically to treat tion such as p53 (ref. 6). Patricia Ernst is at the Dartmouth Medical School, viral infections, solid tumors, myeloprolifera- Now Essers et al.3 and Sato et al.4 report a Department of Genetics and Norris Cotton Cancer tive disorders, hematopoietic neoplasms and new role for IFN signaling within the most Center, Hanover, New Hampshire, USA. autoimmune diseases such as multiple sclero- primitive cells of the hematopoietic system. e-mail: [email protected] or patricia. sis. For most of these diseases, the mechanisms The two groups came to similar conclusions [email protected] of action and the precise cellular targets of IFNs starting from very different observations. In 612 VOLUME 15 | NUMBER 6 | JUNE 2009 NATURE MEDICINE NEWS AND VIEWS the course of using a mouse model commonly IRF9-mediated transcription. Essers et al.3 therapy directed against BCR-ABL, the fusion employed in the study of HSC function, Essers found that Stat1 was required for the IFN-α– protein characteristic of CML—experienced et al.3 found that high levels of IFN-α induced mediated exit from dormancy, indicating that persistent remission, and perhaps cure, upon HSC proliferation. Sato et al.4 were studying this unusual effect on proliferation is medi- drug discontinuation9,10. In contrast, patients the immune modulatory effects of IFNs and ated by a canonical IFN signaling component. from the same study, and from other clinical other cytokines on immune effector cells when How IFN-α signals are interpreted differently cohorts, who achieved remission after imatinib they found that mice lacking a component of in HSCs compared to other cell types is yet to treatment but were not previously treated with the IFN signaling pathway had an unexpected be determined. IFN-α, often relapsed upon imatinib discon- imbalance of proliferation within the HSC A remaining mystery is why an important tinuation9–11. Persistent CML-initiating cells, pool. Both groups tracked their observations antiviral signal should influence HSC activity or CML stem cells, which are protected from to a direct effect of IFN-α on the proliferation and hematopoiesis. The induced prolifera- imatinib killing by their quiescent status, are state of HSCs3,4. tion of HSCs could be a means to replace the probably responsible for the regrowth of the Sato et al.4 studied mice that were genetically immune cells turned over in the process of viral disease12. deficient for a negative regulator of type I inter- clearance. However, both groups show that The emerging possibility to explain the feron signaling, interferon response factor-2 one outcome of the enhanced HSC prolifera- stable remission in the patients previously (IRF2)4,7. The investigators discovered that tion is ultimately the decreased production of treated with IFN-α could be that the exposure these mice had a greater proportion of HSCs mature cells3,4. So it is unlikely that this feed- to IFN-α induced the CML stem cells to exit that were proliferating, instead of quiescent back mechanism is in place simply to amplify quiescence and proliferate such that, upon as would be found in normal mice. Chronic cells at the top of the hematopoietic hierarchy. imatinib treatment, they became vulnerable proliferation can impair certain functions One aspect not investigated by either group is to imatinib rather than remaining protected. of HSCs, such as their ability to repopulate whether the proliferating HSCs are mobilized Although the results of the patient studies the bone marrow of irradiated mice2. Sato et or trafficked differently as compared to nonin- need to be confirmed in larger studies, they al.4 found that the IRF2-deficient HSCs were duced HSCs. Previous studies have illustrated raise the tantalizing possibility of an effective unable to restore hematopoiesis in irradiated that bacterial products mimicking infection targeting strategy for drug-resistant quiescent mice, indicating that this cell population was cause the preferential migration of HSCs into cancer stem cells in individuals suffering from no longer fully functional. However, if type I peripheral tissues, where they participate in CML and other hematologic malignancies11. IFN signaling was disabled in the HSCs, the immune regulation by differentiating into These new insights into the role of IFN signal- ability to repopulate the bone marrow could immune effector cells8. Therefore, the HSC ing in normal HSC quiescence may spark fur- be restored in IRF2-deficient HSCs. This obser- proliferation induced by IFNs may serve to ther interest in manipulating this pathway to vation suggests that IRF2 normally suppresses generate immune effector cells from circulating kick quiescent leukemia stem cells into a more IFN signaling in wild-type HSCs, maintaining HSCs for rapid deployment against infections vulnerable state. these cells mostly in a dormant state (Fig. 1). or tumor cells. Both groups found that high levels of IFN-α In contrast to the value of this feedback sys- 1. Wilson, A. et al. Ann. NY Acad. Sci. 1106, 64–75 directly induced wild-type HSCs to exit qui- tem to the hematopoietic system, the potential (2007). 3,4 2. Jude, C.D., Gaudet, J.J., Speck, N.A. & Ernst, P. Cell escence and transiently proliferate in vivo . clinical value of these findings is quite clear. Cycle 7, 586–591 (2008).
Recommended publications
  • Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
    ARTICLE Received 30 May 2013 | Accepted 21 Nov 2013 | Published 20 Dec 2013 DOI: 10.1038/ncomms3990 Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation Jesse W. Williams1, Melissa Y. Tjota2,3, Bryan S. Clay2, Bryan Vander Lugt4, Hozefa S. Bandukwala2, Cara L. Hrusch5, Donna C. Decker5, Kelly M. Blaine5, Bethany R. Fixsen5, Harinder Singh4, Roger Sciammas6 & Anne I. Sperling1,2,5 Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation. 1 Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 2 Committee on Immunology, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 3 Medical Scientist Training Program, University of Chicago, 924 E.
    [Show full text]
  • CDP/Cut Is the DNA-Binding Subunit of Histone Gene Transcription Cell
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11516-11521, October 1996 Biochemistry CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: A mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F (proliferation/gene expression/cyclin-dependent kinase/tumor suppressor) A. J. VAN WIJNEN*, M. F. vAN GURP*, M. C. DE RIDDER*, C. TUFARELLIt, T. J. LAST*, M. BIRNBAUM*, P. S. VAUGHAN*, A. GIORDANOt, W. KREK§, E. J. NEUFELDt, J. L. STEIN*, AND G. S. STEIN* *Department of Cell Biology, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655; tDivision of Hematology, Enders 720, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115; tInstitute for Cancer Research and Molecular Medicine, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and §Friedrich-Miescher Institut, Postfach 2543, CH-4002 Basel, Switzerland Communicated by Sheldon Penman, Massachusetts Institute of Technology, Cambridge, MA, June 26, 1996 (received for review June 5, 1996) ABSTRACT Transcription of the genes for the human. 2/pl3O, and p107), CDKs, and cyclins A and E (14-17). histone proteins H4, H3,.H2A, H2B, and Hi is activated at the Variation in the composition of E2F containing multiprotein G1/S phase transition of the cell cycle. We have previously complexes may be functionally relevant for the timing and shown that the promoter complex HiNF-D, which interacts extent to which cell cycle controlled genes are activated or with cell cycle control elements in multiple histone genes, repressed. contains the key cell cycle factors cyclin A, CDC2, and a Expression of the genes for the histone proteins H4, H3, retinoblastoma (pRB) protein-related protein.
    [Show full text]
  • Irf1) Signaling Regulates Apoptosis and Autophagy to Determine Endocrine Responsiveness and Cell Fate in Human Breast Cancer
    INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER A Dissertation Submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology & Biophysics By Jessica L. Roberts, B.S. Washington, DC September 27, 2013 Copyright 2013 by Jessica L. Roberts All Rights Reserved ii INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER Jessica L. Roberts, B.S. Thesis Advisor: Robert Clarke, Ph.D. ABSTRACT Interferon regulatory factor-1 (IRF1) is a nuclear transcription factor and pivotal regulator of cell fate in cancer cells. While IRF1 is known to possess tumor suppressive activities, the role of IRF1 in mediating apoptosis and autophagy in breast cancer is largely unknown. Here, we show that IRF1 inhibits antiapoptotic B-cell lymphoma 2 (BCL2) protein expression, whose overexpression often contributes to antiestrogen resistance. We proposed that directly targeting the antiapoptotic BCL2 members with GX15-070 (GX; obatoclax), a BH3-mimetic currently in clinical development, would be an attractive strategy to overcome antiestrogen resistance in some breast cancers. Inhibition of BCL2 activity, through treatment with GX, was more effective in reducing the cell density of antiestrogen resistant breast cancer cells versus sensitive cells, and this increased sensitivity correlated with an accumulation of autophagic vacuoles. While GX treatment promoted autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulated.
    [Show full text]
  • In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs.
    [Show full text]
  • Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells
    Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells This information is current as Kwan T. Chow, Courtney Wilkins, Miwako Narita, Richard of September 28, 2021. Green, Megan Knoll, Yueh-Ming Loo and Michael Gale, Jr. J Immunol published online 8 October 2018 http://www.jimmunol.org/content/early/2018/10/05/jimmun ol.1800221 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180022 Material 1.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 8, 2018, doi:10.4049/jimmunol.1800221 The Journal of Immunology Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells Kwan T. Chow,*,† Courtney Wilkins,* Miwako Narita,‡ Richard Green,* Megan Knoll,* Yueh-Ming Loo,* and Michael Gale, Jr.* We examined the signaling pathways and cell type–specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor.
    [Show full text]
  • Rnaseq Analysis Identifies Non-Canonical Role of STAT2 And
    bioRxiv preprint doi: https://doi.org/10.1101/273623; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 RNASeq analysis identifies non-canonical role of STAT2 and IRF9 in 2 the regulation of a STAT1-independent antiviral and 3 immunoregulatory transcriptional program induced by IFNβ and 4 TNFα 5 6 Mélissa K. Mariani1, Pouria Dasmeh2,3, Audray Fortin1, Mario Kalamujic1, Elise Caron1, 7 Alexander N. Harrison1,4 Sandra Cervantes-Ortiz1,5, Espérance Mukawera1, Adrian W.R. 8 Serohijos2,3 and Nathalie Grandvaux1,2* 9 10 1 CRCHUM - Centre Hospitalier de l’Université de Montréal, Québec, Canada 11 2 Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 12 Qc, Canada. 13 3 Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, Qc, Canada 14 4 Department of Microbiology and Immunology, McGill University, Qc, Canada 15 5 Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de 16 Montréal, Qc, Canada 17 18 * Correspondence: 19 Corresponding Author 20 [email protected] 21 22 Keywords: Interferon β, TNFα, STAT1, STAT2, IRF9, antiviral, 23 24 Running title: STAT1-independent transcriptional response to IFNβ+TNFα 25 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/273623; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Expression Profiling Associates Blood and Brain Glucocorticoid Receptor
    Expression profiling associates blood and brain SEE COMMENTARY glucocorticoid receptor signaling with trauma-related individual differences in both sexes Nikolaos P. Daskalakisa,b,1, Hagit Cohenc, Guiqing Caia,d, Joseph D. Buxbauma,d,e, and Rachel Yehudaa,b,e Departments of aPsychiatry, dGenetics and Genomic Sciences, and eNeuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bMental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468; and cAnxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84170, Israel Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved July 14, 2014 (received for review February 7, 2014) Delineating the molecular basis of individual differences in the stress response to stress (4, 5). The emergence of system- and genome- response is critical to understanding the pathophysiology and treat- wide approaches permits the opportunity for unbiased identifi- ment of posttraumatic stress disorder (PTSD). In this study, 7 d after cation of novel pathways. Because PTSD is more prevalent in predator-scent-stress (PSS) exposure, male and female rats were women than men (1), and sex is a potential source of response classified into vulnerable (i.e., “PTSD-like”) and resilient (i.e., minimally variation to trauma in both animals (6) and humans (7), it is also affected) phenotypes on the basis of their performance on a variety of critical to include both sexes in such studies. behavioral measures. Genome-wide expression profiling in blood and In the present study, PSS-exposed male and female rats were two limbic brain regions (amygdala and hippocampus), followed by behaviorally tested in EPM and ASR tests a week after PSS and divided in EBR and MBR groups [at this point, the behavioral quantitative PCR validation, was performed in these two groups of response of the rats is stable in terms of prevalence of EBRs vs.
    [Show full text]
  • Sirna Targeting the IRF2 Transcription Factor Inhibits Leukaemic Cell Growth
    175-183 9/6/08 16:54 Page 175 INTERNATIONAL JOURNAL OF ONCOLOGY 33: 175-183, 2008 175 siRNA targeting the IRF2 transcription factor inhibits leukaemic cell growth AILYN CHOO1, PATRICIA PALLADINETTI1, TIFFANY HOLMES2, SHREERUPA BASU2, SYLVIE SHEN1, RICHARD B. LOCK1, TRACEY A. O'BRIEN2, GEOFF SYMONDS1 and ALLA DOLNIKOV1,2 1Children's Cancer Institute Australia for Medical Research; 2Sydney Cord & Marrow Transplant Facility, Sydney Children's Hospital, High Street, Randwick NSW 2031, Australia Received January 11, 2008; Accepted February 27, 2008 Abstract. Interferon regulatory factor (IRF) 1 and its functional mechanisms or transcriptional regulators thereby directly antagonist IRF2 were originally discovered as transcription interfering with haematopoietic cell growth and differentiation factors that regulate the interferon-ß gene. Control of cell (1). growth has led to the definition of IRF1 as a tumour suppressor Mutations that create constitutively active Ras proteins gene and IRF2 as an oncogene. Clinically, approximately are among the most frequently detected genetic alterations in 70% of cases of acute myeloid leukaemia demonstrate dys- human leukaemia (2), occurring in approximately 30% of regulated expression of IRF1 and/or IRF2. Our previous AML cases (3). While frequently activated in haematopoietic studies have shown that human leukaemic TF-1 cells exhibit malignancies, the manner in which Ras activation contributes abnormally high expression of both IRF1 and IRF2, the latter to human leukaemia is not well understood. The Ras protein acting to abrogate IRF1 tumour suppression, making these has a crucial role in many haematopoietic regulatory processes cells ideal for analysis of down-regulation of IRF2 expression. and has been the target of many therapeutic approaches (3,4).
    [Show full text]
  • Frequent Loss of IRF2 in Cancers Leads to Immune Evasion Through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression
    Published August 30, 2019, doi:10.4049/jimmunol.1900475 The Journal of Immunology Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression Barry A. Kriegsman,* Pranitha Vangala,† Benjamin J. Chen,* Paul Meraner,‡ Abraham L. Brass,‡,x,{ Manuel Garber,† and Kenneth L. Rock* To arise and progress, cancers need to evade immune elimination. Consequently, progressing tumors are often MHC class I (MHC-I) low and express immune inhibitory molecules, such as PD-L1, which allows them to avoid the main antitumor host defense, CD8+ T cells. The molecular mechanisms that led to these alterations were incompletely understood. In this study, we identify loss of the transcription factor IRF2 as a frequent underlying mechanism that leads to a tumor immune evasion phenotype in both humans and mice. We identified IRF2 in a CRISPR-based forward genetic screen for genes that controlled MHC-I Ag presentation in HeLa cells. We then found that many primary human cancers, including lung, colon, breast, prostate, and others, frequently downregulated IRF2. Although IRF2 is generally known as a transcriptional repressor, we found that it was a transcriptional activator of many key components of the MHC-I pathway, including immunoproteasomes, TAP, and ERAP1, whose transcrip- tional control was previously poorly understood. Upon loss of IRF2, cytosol-to–endoplasmic reticulum peptide transport and N-terminal peptide trimming become rate limiting for Ag presentation. In addition, we found that IRF2 is a repressor of PD-L1. Thus, by downregulating a single nonessential gene, tumors become harder to see (reduced Ag presentation), more inhibitory (increased checkpoint inhibitor), and less susceptible to being killed by CD8+ T cells.
    [Show full text]
  • 1 Type I Interferon Transcriptional Network Regulates Expression Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362947; this version posted October 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Type I Interferon Transcriptional Network Regulates Expression of Coinhibitory Receptors in Human T cells Tomokazu S. Sumida*1, Shai Dulberg2*, Jonas Schupp3*, Helen A. Stillwell1, Pierre-Paul Axisa1, Michela Comi1, Matthew Lincoln1, Avraham Unterman3, Naftali Kaminski3, Asaf Madi2,4, Vijay K. Kuchroo4,5,†, David A. Hafler1,5,† 1Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA. 2 Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. 3Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. 4 Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA. 5Broad Institute of MIT and Harvard, Cambridge, MA, USA. *Equal Contributions † Correspondence to Drs. Vijay Kuchroo ([email protected]) or David Hafler ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362947; this version posted October 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • IRF2BP2 Mutation Is Associated with Increased STAT1 and STAT5 Activation in Two Family Members with Inflammatory Conditions and Lymphopenia
    pharmaceuticals Case Report IRF2BP2 Mutation Is Associated with Increased STAT1 and STAT5 Activation in Two Family Members with Inflammatory Conditions and Lymphopenia Maaria Palmroth 1 , Hanna Viskari 2,3, Mikko R. J. Seppänen 4, Salla Keskitalo 5, Anniina Virtanen 1, Markku Varjosalo 5, Olli Silvennoinen 1,6,7 and Pia Isomäki 1,8,* 1 Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; maaria.palmroth@tuni.fi (M.P.); anniina.t.virtanen@tuni.fi (A.V.); olli.silvennoinen@tuni.fi (O.S.) 2 Department of Internal Medicines, Tampere University Hospital, 33520 Tampere, Finland; hanna.viskari@pshp.fi 3 Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland 4 Rare Disease and Pediatric Research Centers, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; mikko.seppanen@hus.fi 5 Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; salla.keskitalo@helsinki.fi (S.K.); markku.varjosalo@helsinki.fi (M.V.) 6 Fimlab Laboratories, Pirkanmaa Hospital District, 33520 Tampere, Finland 7 HiLIFE Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland Citation: Palmroth, M.; Viskari, H.; 8 Centre for Rheumatic Diseases, Tampere University Hospital, 33520 Tampere, Finland Seppänen, M.R.J.; Keskitalo, S.; * Correspondence: pia.isomaki@tuni.fi Virtanen, A.; Varjosalo, M.; Silvennoinen, O.; Isomäki, P. IRF2BP2 Abstract: Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator Mutation Is Associated with that has an important role in the regulation of the immune response. IRF2BP2 has been associated Increased STAT1 and STAT5 with the Janus kinase (JAK)—signal transducers and activators of transcription (STAT) pathway, but Activation in Two Family Members its exact role remains elusive.
    [Show full text]
  • Duck Interferon Regulatory Factor 7 (IRF7) Can Control Duck Tembusu
    Cytokine 113 (2019) 31–38 Contents lists available at ScienceDirect Cytokine journal homepage: www.elsevier.com/locate/cytokine Duck interferon regulatory factor 7 (IRF7) can control duck Tembusu virus (DTMUV) infection by triggering type I interferon production and its signal T transduction pathway Shun Chena,b,c,1, Tao Wanga,1, Peng Liua, Chao Yanga, Mingshu Wanga,b,c, Renyong Jiaa,b,c, ⁎ Dekang Zhub,c, Mafeng Liua,b,c, Qiao Yanga,b,c, Ying Wua,b,c, Xinxin Zhaoa,b,c, Anchun Chenga,b,c, a Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China b Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China c Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China ARTICLE INFO ABSTRACT Keywords: Human interferon regulatory factor 7 (IRF7) plays an important role in the innate antiviral immune response. To Duck date, the characteristics and functions of waterfowl IRF7 have not been clarified. This study reports the cDNA IRF7 sequence, tissue distribution, and antiviral function of duck IRF7. The duck IRF7 gene has a 1536-bp open read Tembusu virus frame (ORF) and encodes a 511-amino acid polypeptide. IRF7 is highly expressed in the blood and pancreas of 5- Type I interferon day-old ducklings and in the small intestine, large intestine and liver of 60-day-old adult ducks. Indirect im- Innate immune response munofluorescence assay (IFA) showed that over-expressed duck IRF7 was located in both the cytoplasm and nucleus of transfected duck embryo fibroblasts (DEFs), which was also observed in poly(I:C)-stimulated or duck Tembusu virus (DTMUV)-infected DEFs.
    [Show full text]