Frequent Loss of IRF2 in Cancers Leads to Immune Evasion Through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression

Total Page:16

File Type:pdf, Size:1020Kb

Frequent Loss of IRF2 in Cancers Leads to Immune Evasion Through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression Published August 30, 2019, doi:10.4049/jimmunol.1900475 The Journal of Immunology Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression Barry A. Kriegsman,* Pranitha Vangala,† Benjamin J. Chen,* Paul Meraner,‡ Abraham L. Brass,‡,x,{ Manuel Garber,† and Kenneth L. Rock* To arise and progress, cancers need to evade immune elimination. Consequently, progressing tumors are often MHC class I (MHC-I) low and express immune inhibitory molecules, such as PD-L1, which allows them to avoid the main antitumor host defense, CD8+ T cells. The molecular mechanisms that led to these alterations were incompletely understood. In this study, we identify loss of the transcription factor IRF2 as a frequent underlying mechanism that leads to a tumor immune evasion phenotype in both humans and mice. We identified IRF2 in a CRISPR-based forward genetic screen for genes that controlled MHC-I Ag presentation in HeLa cells. We then found that many primary human cancers, including lung, colon, breast, prostate, and others, frequently downregulated IRF2. Although IRF2 is generally known as a transcriptional repressor, we found that it was a transcriptional activator of many key components of the MHC-I pathway, including immunoproteasomes, TAP, and ERAP1, whose transcrip- tional control was previously poorly understood. Upon loss of IRF2, cytosol-to–endoplasmic reticulum peptide transport and N-terminal peptide trimming become rate limiting for Ag presentation. In addition, we found that IRF2 is a repressor of PD-L1. Thus, by downregulating a single nonessential gene, tumors become harder to see (reduced Ag presentation), more inhibitory (increased checkpoint inhibitor), and less susceptible to being killed by CD8+ T cells. Importantly, we found that the loss of Ag presentation caused by IRF2 downregulation could be reversed by IFN-stimulated induction of the transcription factor IRF1. The implication of these findings for tumor progression and immunotherapy are discussed. The Journal of Immunology, 2019, 203: 000–000. he importance of adaptive immunity in preventing cancer mutagen-induced tumors (1–3). In addition, tumors derived from was revealed through studies in which immunodeficient such immunodeficient animals grew when transplanted into other T animals, such as those lacking IFN-g, perforin, or RAG-2, immunodeficient hosts but were rejected when placed into im- werefoundtohaveamarkedincreaseinspontaneousand munocompetent hosts (3–5), providing further evidence that the immune system recognized such tumors and could reject them. In contrast, many tumors arising in immunocompetent animals *Department of Pathology, University of Massachusetts Medical School, Worcester, grew after being transplanted into immunocompetent hosts (3–5), MA 01655; †Department of Bioinformatics and Computational Biology, University of Massachusetts Medical School, Worcester, MA 01655; ‡Department of Microbi- thereby showing that cancers that arise and successfully progress ology and Physiological Systems, University of Massachusetts Medical School, in the face of the immune system have undergone immunoediting Worcester, MA 01655; xDepartment of Medicine, Gastroenterology Division, Uni- { to escape from immune control. This immunoediting process is versity of Massachusetts Medical School, Worcester, MA 01655; and Peak Gastro- enterology Associates, Colorado Springs, CO 80907 thought to be why many cancers express low levels of MHC class ORCIDs: 0000-0002-4146-2370 (B.A.K.); 0000-0003-4000-7891 (P.V.); 0000-0003- I (MHC-I) and upregulate certain inhibitory molecules (6). The 0153-4680 (P.M.). underlying molecular mechanisms responsible for these changes Received for publication April 29, 2019. Accepted for publication August 1, 2019. are poorly understood but have obvious potential impact on tumor This work was supported by National Institutes of Health Grants R01 AI114495 progression and immunotherapy (7, 8). (to K.L.R.), T32 AI095213 (to B.A.K.), and T32 GM107000 (to B.A.K.). This work The MHC-I presentation pathway is critical for immune rec- was funded by an Investigators in the Pathogenesis of Infectious Disease grant from ognition and elimination of tumors by CD8+ T cells. In this the Burroughs Wellcome Fund (to A.L.B.). A.L.B. is grateful to the Bill and Melinda Gates Foundation and to Gilead Sciences Inc. for their support. process, a fraction of peptides that are generated by proteaso- The RNA-sequencing data presented in this article have been deposited to the Gene mal degradation of cellular proteins are transported by the TAP Expression Omnibus under accession number GSE133089 (www.ncbi.nlm.nih.gov/ transporter into the endoplasmic reticulum (ER), wherein they can geo/query/acc.cgi?acc=GSE133089). be further trimmed by the aminopeptidase, ERAP1 (9–11). Sub- Address correspondence and reprint requests to Dr. Kenneth L. Rock, University of sequently, peptides of the correct length and sequence bind to Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655. E-mail address: [email protected] MHC-I molecules and these complexes are then transported to the + The online version of this article contains supplemental material. cell surface for display to CD8 T cells. This allows activated CD8+ T cells to identify and kill cells that are presenting tumor- Abbreviations used in this article: ChIP, chromatin immunoprecipitation; Ct, cycle threshold; DC, dendritic cell; ER, endoplasmic reticulum; EV, empty vector; IP, specific peptides (e.g., from mutant proteins) on their MHC-I (12). immunoprecipitation; IRF2-KO, IRF2-knockout; ISRE, IFN-stimulated response We performed an unbiased, forward genetic screen in human element; MFI, mean fluorescence intensity; MHC-I, MHC class I; MHC-II, MHC class II; NEB, New England Biolabs; NSCLC, non–small cell lung cancer; PD-L1, cervical carcinoma HeLa H1 cells to identify genes whose loss programmed death-ligand 1; qPCR, quantitative PCR; RNA-seq, RNA sequencing; downregulated the MHC-I pathway. In this screen, the second RT, room temperature; sgRNA, short guide RNA; siRNA, small interfering RNA; strongest hit, second only to b2-microglobulin (the MHC-I WT, wild-type. L chain), was IRF2, an IFN regulatory transcription factor Copyright Ó 2019 by The American Association of Immunologists, Inc. 0022-1767/19/$37.50 that had not been previously recognized to positively regulate this www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900475 2 FREQUENT LOSS OF IRF2 IN CANCERS LEADS TO IMMUNE EVASION pathway. In this article, we show that under basal conditions, 59-GACTACCGGTATGCCGGTGGAAAGGATGCGCATG-39;humanIRF2 not only does IRF2 positively regulate the MHC-I pathway by sgRNA mut reverse: 59-GCCGTGCCTCGCTGCGTGCATCCAGGGGATCT- transcriptionally activating genes necessary for peptide transport GAAAAATCTTCTTTTCCTTG-39; human IRF2 sgRNA mut forward: 59-GATGCACGCAGCGAGGCACGGCTGGGATGTGGAAAAAGATGCA- and processing, but it also transcriptionally represses the ex- CCACTCTTTAGAAA-39; human IRF2 MluI reverse: 59-GATCACGCGTTTA- pression of programmed death-ligand1(PD-L1),animportant ACAGCTCTTGACGCGGGCCTGG-39; mouse IRF2 AgeI forward: immune checkpoint molecule. These results, together with our 59-GATCACCGGTATGCCGGTGGAACGGATGCGAATG-39;mouse findings that many human cancers have downregulated IRF2 IRF2 sgRNA mut reverse: 59-CCTTTTTTCGAGGGGCGCTCTGATAA- GGGCAGCATCCGGTAGACTCTGAAGGCG-39; mouse IRF2 sgRNA expression and that tumor cells lacking IRF2 are more difficult to mut forward: 59- CTTATCAGAGCGCCCCTCGAAAAAAGGAAAGA- kill, demonstrate that loss of IRF2 by cancers is a common immune AACCAAAGACAGAAAAAGAAGAGAG-39; and mouse IRF2 MluI re- evasion mechanism and this has obvious therapeutic implications. verse: 59-GATCACGCGTTTAACAGCTCTTGACACGGGCCTGG-39. Cell surface staining Materials and Methods Cells Where indicated, mouse cells were blocked with 2.4G2 and stained for surface MHC-I levels with anti-Kb–allophycocyanin (AF6-88.5.5.3; A E DC3.2 is a J2 virus-immortalized dendritic cell (DC) line (13). A particular eBioscience), MHC-II levels with anti–I /I -PECy7 (M5/114.15.2; Bio- DC3.2 clone (with Renilla luciferase) was used for all experiments in this Legend), PD-L1 levels with anti–PD-L1-PE (10F.9G2; BioLegend), or study, as this clone has very strong cross-presentation and MHC class II with isotype controls (eBioscience mouse IgG2a-allophycocyanin eBM2a, (MHC-II) presentation, as compared with other clones. RF33.70 is a T cell eBioscience rat IgG2b k-PE eB149) at 1:200 dilutions. Where indicated, hybridoma that recognizes the OVA peptide OVA257–264 in the context of human cells were stained for surface MHC-I levels with W6/32. W6/32 b H2-K (14). MF2.2D9 is a T cell hybridoma that recognizes OVA258–276 in staining was performed either by two-step labeling with W6/32 hybridoma the context of I-Ab (13). RF33.70 and MF2.2D9 were transduced with supernatant followed by 1:500 donkey–anti-mouse Alexa 647 (Life lentivirus containing NFAT-luciferase. NIH-3T3 cells were stably trans- Technologies) or by one-step labeling with 1:200 FITC-conjugated W6/32 fected with the mouse H2-Kb molecule. A549 and MCF7 were kindly (eBioscience). Where indicated, human cells were stained for surface provided by Leslie Shaw (University of Massachusetts), and the D53m and PD-L1 levels with 1:200 rabbit anti–PD-L1 (28-8; Abcam), followed by H50m mouse MCA-induced sarcoma lines were kindly provided by 1:500 donkey–anti-rabbit Alexa 647 (Life Technologies). Normalized R. Schreiber (Washington
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Review Article the Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer
    SAGE-Hindawi Access to Research International Journal of Breast Cancer Volume 2011, Article ID 912102, 9 pages doi:10.4061/2011/912102 Review Article The Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer J.L.Schwartz,A.N.Shajahan,andR.Clarke Georgetown University Medical Center, W401 Research Building, 3970 Reservoir Road, NW, Washington, DC 20057, USA Correspondence should be addressed to R. Clarke, [email protected] Received 18 February 2011; Revised 29 April 2011; Accepted 9 May 2011 Academic Editor: Chengfeng Yang Copyright © 2011 J. L. Schwartz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Resistance to endocrine therapy is common among breast cancer patients with estrogen receptor alpha-positive (ER+) tumors and limits the success of this therapeutic strategy. While the mechanisms that regulate endocrine responsiveness and cell fate are not fully understood, interferon regulatory factor-1 (IRF1) is strongly implicated as a key regulatory node in the underlying signaling network. IRF1 is a tumor suppressor that mediates cell fate by facilitating apoptosis and can do so with or without functional p53. Expression of IRF1 is downregulated in endocrine-resistant breast cancer cells, protecting these cells from IRF1- induced inhibition of proliferation and/or induction of cell death. Nonetheless, when IRF1 expression is induced following IFNγ treatment, antiestrogen sensitivity is restored by a process that includes the inhibition of prosurvival BCL2 family members and caspase activation.
    [Show full text]
  • IFN-Α Wakes up Sleeping Hematopoietic Stem Cells
    NEWS AND VIEWS calcium consumption does not seem to have without increasing the risk of coronary heart 7. Aoki, K. et al. Ann. Epidemiol. 15, 598–606 (2005). such an effect. How to optimize calcium sup- disease, which has been associated with cal- 8. Langhans, N. et al. Gastroenterology 112, 280–286 13 plements for human health deserves further cium supplementation . (1997). investigation. 9. Recker, R.R. N. Engl. J. Med. 313, 70–73 (1985). 10. Yang, Y.-X. et al. J. Am. Med. Assoc. , 2947– Maybe it’s time to determine whether low- 1. Zaidi, M. Nat. Med. 13, 791–801 (2007). 296 2. Del Fattore, A. et al. Bone 42, 19–29 (2008). 2953 (2006). fat milk–based drinks taken as an alternative 3. Sobacchi, C. et al. Hum. Mol. Genet. 10, 1767–1773 11. Collazo-Clavell, M.L., Jimenez, A., Hodgson, S.F. & to the soda so frequently consumed, especially (2001). Sarr, M.G. Endocr. Pract. 10, 195–198 (2004). 4. Amling, M. et al. Nat. Med. 15, 674–681 (2009). 12. Bo-Linn, G.W. et al. J. Clin. Invest. 73, 640–647 during the early adolescent years, can attain 5. Straub, D.A. Nutr. Clin. Pract. 22, 286–296 (2007). (1984). the noble goal of keeping bones healthy— 6. Teitelbaum, S.L. Science 289, 1504–1508 (2000). 13. Bolland, M.J. BMJ 336, 262–266 (2008). IFN-α wakes up sleeping hematopoietic stem cells Emmanuelle Passegué & Patricia Ernst The cytokine interferon-α stimulates the turnover and proliferation of hematopoietic cells in vivo (pages 696–700).
    [Show full text]
  • The Proapoptotic Gene Interferon Regulatory Factor-1 Mediates the Antiproliferative Outcome of Paired Box 2 Gene and Tamoxifen
    Oncogene (2020) 39:6300–6312 https://doi.org/10.1038/s41388-020-01435-4 ARTICLE The proapoptotic gene interferon regulatory factor-1 mediates the antiproliferative outcome of paired box 2 gene and tamoxifen 1 1 1 2 3 3 Shixiong Wang ● Venkata S. Somisetty ● Baoyan Bai ● Igor Chernukhin ● Henri Niskanen ● Minna U. Kaikkonen ● 4,5 2 6,7 Meritxell Bellet ● Jason S. Carroll ● Antoni Hurtado Received: 13 November 2019 / Revised: 5 August 2020 / Accepted: 17 August 2020 / Published online: 25 August 2020 © The Author(s) 2020. This article is published with open access Abstract Tamoxifen is the most prescribed selective estrogen receptor (ER) modulator in patients with ER-positive breast cancers. Tamoxifen requires the transcription factor paired box 2 protein (PAX2) to repress the transcription of ERBB2/HER2. Now, we identified that PAX2 inhibits cell growth of ER+/HER2− tumor cells in a dose-dependent manner. Moreover, we have identified that cell growth inhibition can be achieved by expressing moderate levels of PAX2 in combination with tamoxifen treatment. Global run-on sequencing of cells overexpressing PAX2, when coupled with PAX2 ChIP-seq, identified common targets regulated by both PAX2 and tamoxifen. The data revealed that PAX2 can inhibit estrogen-induced gene transcription 1234567890();,: 1234567890();,: and this effect is enhanced by tamoxifen, suggesting that they converge on repression of the same targets. Moreover, PAX2 and tamoxifen have an additive effect and both induce coding genes and enhancer RNAs (eRNAs). PAX2–tamoxifen upregulated genes are also enriched with PAX2 eRNAs. The enrichment of eRNAs is associated with the highest expression of genes that positivity regulate apoptotic processes.
    [Show full text]
  • A Dual Cis-Regulatory Code Links IRF8 to Constitutive and Inducible Gene Expression in Macrophages
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages Alessandra Mancino,1,3 Alberto Termanini,1,3 Iros Barozzi,1 Serena Ghisletti,1 Renato Ostuni,1 Elena Prosperini,1 Keiko Ozato,2 and Gioacchino Natoli1 1Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy; 2Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome.
    [Show full text]
  • Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
    ARTICLE Received 30 May 2013 | Accepted 21 Nov 2013 | Published 20 Dec 2013 DOI: 10.1038/ncomms3990 Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation Jesse W. Williams1, Melissa Y. Tjota2,3, Bryan S. Clay2, Bryan Vander Lugt4, Hozefa S. Bandukwala2, Cara L. Hrusch5, Donna C. Decker5, Kelly M. Blaine5, Bethany R. Fixsen5, Harinder Singh4, Roger Sciammas6 & Anne I. Sperling1,2,5 Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation. 1 Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 2 Committee on Immunology, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 3 Medical Scientist Training Program, University of Chicago, 924 E.
    [Show full text]
  • CDP/Cut Is the DNA-Binding Subunit of Histone Gene Transcription Cell
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11516-11521, October 1996 Biochemistry CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: A mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F (proliferation/gene expression/cyclin-dependent kinase/tumor suppressor) A. J. VAN WIJNEN*, M. F. vAN GURP*, M. C. DE RIDDER*, C. TUFARELLIt, T. J. LAST*, M. BIRNBAUM*, P. S. VAUGHAN*, A. GIORDANOt, W. KREK§, E. J. NEUFELDt, J. L. STEIN*, AND G. S. STEIN* *Department of Cell Biology, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655; tDivision of Hematology, Enders 720, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115; tInstitute for Cancer Research and Molecular Medicine, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and §Friedrich-Miescher Institut, Postfach 2543, CH-4002 Basel, Switzerland Communicated by Sheldon Penman, Massachusetts Institute of Technology, Cambridge, MA, June 26, 1996 (received for review June 5, 1996) ABSTRACT Transcription of the genes for the human. 2/pl3O, and p107), CDKs, and cyclins A and E (14-17). histone proteins H4, H3,.H2A, H2B, and Hi is activated at the Variation in the composition of E2F containing multiprotein G1/S phase transition of the cell cycle. We have previously complexes may be functionally relevant for the timing and shown that the promoter complex HiNF-D, which interacts extent to which cell cycle controlled genes are activated or with cell cycle control elements in multiple histone genes, repressed. contains the key cell cycle factors cyclin A, CDC2, and a Expression of the genes for the histone proteins H4, H3, retinoblastoma (pRB) protein-related protein.
    [Show full text]
  • Induced IFN Regulatory Factor 1 Transcription Factor by Myd88 in Toll-Like Receptor-Dependent Gene Induction Program
    Evidence for licensing of IFN-␥-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program Hideo Negishi*, Yasuyuki Fujita*, Hideyuki Yanai*, Shinya Sakaguchi*, Xinshou Ouyang*, Masahiro Shinohara†, Hiroshi Takayanagi†, Yusuke Ohba*, Tadatsugu Taniguchi*‡, and Kenya Honda* *Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; and †Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan Contributed by Tadatsugu Taniguchi, August 18, 2006 The recognition of microbial components by Toll-like receptors (TLRs) In the present study we investigated how IFN-␥-induced IRF1 initiates signal transduction pathways, which trigger the expression contributes to TLR-mediated signaling. We demonstrate that of a series of target genes. It has been reported that TLR signaling is IRF1 forms a complex with MyD88, similar to the case of IRF4, enhanced by cytokines such as IFN-␥, but the mechanisms underlying IRF5, and IRF7. We also provide evidence that IRF1 induced this enhancement remain unclear. The MyD88 adaptor, which is by IFN-␥ is activated by MyD88, which we refer to as ‘‘licensing,’’ essential for signaling by many TLRs, recruits members of the IFN and migrates rapidly into the nucleus to mediate an efficient regulatory factor (IRF) family of transcription factors, such as IRF5 and induction of IFN-␤, iNOS, and IL-12p35. Our study therefore IRF7, to evoke the activation of TLR target genes. In this study we revealed that IRF1 is a previously unidentified member of the demonstrate that IRF1, which is induced by IFN-␥, also interacts with multimolecular complex organized via MyD88 and that the IRF1 and is activated by MyD88 upon TLR activation.
    [Show full text]
  • Irf1) Signaling Regulates Apoptosis and Autophagy to Determine Endocrine Responsiveness and Cell Fate in Human Breast Cancer
    INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER A Dissertation Submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology & Biophysics By Jessica L. Roberts, B.S. Washington, DC September 27, 2013 Copyright 2013 by Jessica L. Roberts All Rights Reserved ii INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER Jessica L. Roberts, B.S. Thesis Advisor: Robert Clarke, Ph.D. ABSTRACT Interferon regulatory factor-1 (IRF1) is a nuclear transcription factor and pivotal regulator of cell fate in cancer cells. While IRF1 is known to possess tumor suppressive activities, the role of IRF1 in mediating apoptosis and autophagy in breast cancer is largely unknown. Here, we show that IRF1 inhibits antiapoptotic B-cell lymphoma 2 (BCL2) protein expression, whose overexpression often contributes to antiestrogen resistance. We proposed that directly targeting the antiapoptotic BCL2 members with GX15-070 (GX; obatoclax), a BH3-mimetic currently in clinical development, would be an attractive strategy to overcome antiestrogen resistance in some breast cancers. Inhibition of BCL2 activity, through treatment with GX, was more effective in reducing the cell density of antiestrogen resistant breast cancer cells versus sensitive cells, and this increased sensitivity correlated with an accumulation of autophagic vacuoles. While GX treatment promoted autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulated.
    [Show full text]
  • In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs.
    [Show full text]
  • Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells
    Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells This information is current as Kwan T. Chow, Courtney Wilkins, Miwako Narita, Richard of September 28, 2021. Green, Megan Knoll, Yueh-Ming Loo and Michael Gale, Jr. J Immunol published online 8 October 2018 http://www.jimmunol.org/content/early/2018/10/05/jimmun ol.1800221 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180022 Material 1.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 8, 2018, doi:10.4049/jimmunol.1800221 The Journal of Immunology Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells Kwan T. Chow,*,† Courtney Wilkins,* Miwako Narita,‡ Richard Green,* Megan Knoll,* Yueh-Ming Loo,* and Michael Gale, Jr.* We examined the signaling pathways and cell type–specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor.
    [Show full text]
  • Interferon Regulatory Factor 1 Protects Against Chikungunya Virus-Induced
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 Interferon regulatory factor 1 protects against chikungunya virus-induced immunopathology by restricting infection in muscle cells Sharmila Nair Washington University School of Medicine in St. Louis Subhajit Poddar Washington University School of Medicine in St. Louis Raeann M. Shimak Washington University School of Medicine in St. Louis Michael S. Diamond Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Nair, Sharmila; Poddar, Subhajit; Shimak, Raeann M.; and Diamond, Michael S., ,"Interferon regulatory factor 1 protects against chikungunya virus-induced immunopathology by restricting infection in muscle cells." The ourJ nal of Virology.91,22. e01419-17. (2017). https://digitalcommons.wustl.edu/open_access_pubs/6308 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. PATHOGENESIS AND IMMUNITY crossm Interferon Regulatory Factor 1 Protects against Chikungunya Virus-Induced Downloaded from Immunopathology by Restricting Infection in Muscle Cells Sharmila Nair,a Subhajit Poddar,b Raeann M. Shimak,b* Michael S. Diamonda,b,c,d a b c Departments of Medicine, Pathology and Immunology, and Molecular Microbiology and The Andrew M. http://jvi.asm.org/ and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs,d Washington University School of Medicine, St. Louis, Missouri, USA ABSTRACT The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-␣/␤) (type Received 18 August 2017 Accepted 20 I), IFN-␥ (type II), and IFN-␭ (type III).
    [Show full text]