Duck Interferon Regulatory Factor 7 (IRF7) Can Control Duck Tembusu

Total Page:16

File Type:pdf, Size:1020Kb

Duck Interferon Regulatory Factor 7 (IRF7) Can Control Duck Tembusu Cytokine 113 (2019) 31–38 Contents lists available at ScienceDirect Cytokine journal homepage: www.elsevier.com/locate/cytokine Duck interferon regulatory factor 7 (IRF7) can control duck Tembusu virus (DTMUV) infection by triggering type I interferon production and its signal T transduction pathway Shun Chena,b,c,1, Tao Wanga,1, Peng Liua, Chao Yanga, Mingshu Wanga,b,c, Renyong Jiaa,b,c, ⁎ Dekang Zhub,c, Mafeng Liua,b,c, Qiao Yanga,b,c, Ying Wua,b,c, Xinxin Zhaoa,b,c, Anchun Chenga,b,c, a Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China b Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China c Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China ARTICLE INFO ABSTRACT Keywords: Human interferon regulatory factor 7 (IRF7) plays an important role in the innate antiviral immune response. To Duck date, the characteristics and functions of waterfowl IRF7 have not been clarified. This study reports the cDNA IRF7 sequence, tissue distribution, and antiviral function of duck IRF7. The duck IRF7 gene has a 1536-bp open read Tembusu virus frame (ORF) and encodes a 511-amino acid polypeptide. IRF7 is highly expressed in the blood and pancreas of 5- Type I interferon day-old ducklings and in the small intestine, large intestine and liver of 60-day-old adult ducks. Indirect im- Innate immune response munofluorescence assay (IFA) showed that over-expressed duck IRF7 was located in both the cytoplasm and nucleus of transfected duck embryo fibroblasts (DEFs), which was also observed in poly(I:C)-stimulated or duck Tembusu virus (DTMUV)-infected DEFs. Titres and copies of DTMUV were significantly reduced in DEFs over- expressing IRF7. Moreover, overexpression of duck IRF7 significantly induced IFNα/β, but not IFNγ, mRNA expression, and transcription of downstream interferon-stimulated genes (ISGs), such as MX, OASL and IL-6, which were significantly induced by poly(I:C) co-stimulation, was enhanced. Additionally, duck IRF7 over- expression can significantly activate the IFNβ promoter in DEFs. Collectively, duck IRF7 plays an important role in host anti-DTMUV immune regulation, which depends on type I interferons and associated signal transduction pathway(s). 1. Introduction IRF3 having critical roles in type I IFN-mediated innate immunity. Recognition of pathogens by PRRs results in activation of IRF3 and/or The innate immune response provides the first line of host defence IRF7 [11,12]. Phosphorylation activates IRF7, inducing dimerization during infection. Interferons (IFNs) are critical factors of the innate and exposure of the nuclear localization signal (NLS) [2,8]. Activated immune response [1,2], the initiation of which response depends on IRF7/IRF3 then translocates to the nucleus and forms an enhanceosome recognition of pathogen-associated molecular patterns (PAMPs) by with activating protein 1 (AP-1) and nuclear factor kappa B (NF-κB). pattern recognition receptors (PRRs) [3]. Toll-like receptors (TLRs) and These proteins bind to their respective positive regulatory domains, retinoic-acid-inducible gene I (RIG-I) are key PRRs in the host anti- leading to recruitment of co-factors, resulting in transcription of type I dsRNA viral response [4,5] and can recruit downstream factors when IFNs [2]. activated, resulting in production of interferon and transcription of First identified in 2010, duck Tembusu virus (DTMUV) is a newly interferon-stimulated genes (ISGs) [2,6]. emerging virus that leads to acute egg-drop syndrome in ducks [13]. First cloned in 1997 [7], human IRF7 is the common downstream DTMUV belongs to the Flavivirus genus and has a single positive- factor in both the TLR and RIG-I signalling pathways [8,9]. All IRF7s stranded RNA genome [14]. A recent report demonstrated that DTMUV contain a conserved N-terminal DNA-binding domain (DBD) and an can activate the host innate immune response through the MDA5 and IRF-associated domain (IAD) [10], with IRF family members IRF7 and TLR signalling pathways [15]. However, it remains unknown whether ⁎ Corresponding author at: Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, Sichuan province 611130, China. E-mail address: [email protected] (A. Cheng). 1 These authors contributed equally as co-first authors of this work. https://doi.org/10.1016/j.cyto.2018.06.001 Received 4 January 2018; Received in revised form 2 May 2018; Accepted 1 June 2018 Available online 06 June 2018 1043-4666/ © 2018 Elsevier Ltd. All rights reserved. S. Chen et al. Cytokine 113 (2019) 31–38 duck IRF7 is involved in those pathways. sacrificed, and tissues (the small intestine, large intestine, muscle, bursa Interestingly, IRF3 is absent in the avian genome [16], yet IRF7 may of Fabricius, thymus gland, liver, Harderian glands, spleen, pancreas, complement a portion of the IRF3 function [17]. Although chicken IRF7 brain, trachea, glandular stomach, gizzard, kidney, heart, lung, blood, has been identified [18], the characteristics and functions of IRF7 in and lymph) were collected. Total RNA form the tissues was extracted waterfowl have not yet been elucidated. In this study, duck IRF7 was using RNAiso Plus according to the manufacturer’s instructions (Takara, identified and cloned, and its tissue distribution in ducklings and ducks Japan). For quantitative reverse transcription-PCR (qRT-PCR), 1 μgof was examined. Duck IRF7 can activate the IFNβ promoter to induce total RNA was reverse transcribed following the standard protocol of expression of type I IFNs and ISGs. Duck IRF7 can also inhibit DTMUV PrimeScript™ RT Reagent Kit with gDNA Eraser (Takara, Japan). The replication in vitro, a process that plays an important role in viral in- qRT-PCR reaction system included 0.4 μL of cDNA, 0.3 μL of qPCR- fection. IRF7-F (Table 1), 0.3 μL of qPCR-IRF7-R (Table 1), 4 μL of RNAase-free ddH2O and 5 μL of 2× EvaGreen qPCR Premix (Abcom, USA); the 2. Materials and methods following cycling conditions were used: 95 °C for 10 min, 95 °C for 15 s, and 63 °C for 1 min. 2.1. Experimental animals, virus, reagents 2.5. Western blot analysis of duck IRF7 expression Healthy ducklings and ducks were purchased from a farm in Chengdu City, China. The duck Tembusu virus (DTMUV), CQW1 strain Duck embryo fibroblasts (DEFs) were cultured in 6-well plates and (NCBI accession No. KM233707.1) (50% tissue culture infective dose transfected with 4 μg of pCAGGS-IRF7. After removing the culture 6 (TCID50) = 2.5 × 10 /mL), was provided by the Research Center of medium, the cells were lysed with 500 μL of RIPA Lysis and Extraction Avian Disease, Sichuan Agricultural University. Poly(I:C) was pur- Buffer (Thermo Fisher, USA). The cell lysates were separated by 12% chased from Sigma-Aldrich (USA). polyacrylamide gel electrophoresis, and the separated proteins were electroblotted onto polyvinylidene difluoride (PVDF) membranes 2.2. Sequence amplification and plasmid construction (Millipore, USA). Membranes were blocked overnight in 5% evaporated milk at 4 °C and incubated for 1 h with a 1:2000-diluted mouse anti- The reverse primer, IRF7-R (Table 1), for amplification of duck IRF7 Flag (ProteinTech, China) or mouse anti-β-actin (Ruiying Biological, was designed according to the predicted sequence of duck IRF7 (NCBI China) antibody at 37 °C. The membranes were then incubated for 1.5 h accession No. XM_021270589.1); the forward primer, IRF7-F (Table 1), with 1:2000-diluted horseradish peroxidase (HRP)-conjugated goat was designed according the conserved domain between chicken and anti-mouse IgG (Earthox, USA). The duck IRF7 protein was observed by goose IRF7. The conditions used were 98 °C for 2 min, 98 °C for 10 s, enhanced chemiluminescence (Bio-Rad, USA), and images were ac- 55 °C for 15 s, 72 °C for 20 s, and 72 °C for 5 min. The purified fragment quired using ChemiDoc M (Bio-Rad, USA). was TA cloned into the pMD19-T simple vector (pMD™19-T Vector Cloning Kit, Takara, Japan). pMD19-T-IRF7 was used as the template 2.6. Cellular localization of duck IRF7 in DEFs and pCAGGS-IRF7-F and pCAGGS-IRF7-R as primers (Table 1) for polymerase chain reaction (PCR) amplification. Then, the fragment was DEFs were cultured overnight in Dulbecco's modified Eagle's β fi fl cloned into pCAGGS vector with a Flag tag. IFN- -Luc expresses re y medium (DMEM) with 10% foetal bovine serum (FBS) and 5% CO2 at luciferase under the control of the duck IFN-β promoter (−96 to +1), 37 °C, and 2 μg/ml of plasmid of pCAGGS-IRF7 was transfected into which was constructed by our lab and described in a previous report cells at 70–90% confluence (Transintro EL transfection reagent, [19]. pRL-TK was purchased from Promega (Wisconsin, USA). Transgene, China). At 24 h post-transfection, the DEFs were stimulated with DTMUV (25,000 TCID50) or 50 ng/mL poly(I:C) for 12 h, washed 2.3. Sequence analysis and phylogenetic analysis with phosphate-buffered saline/Tween 20 (PBST), fixed with 4% par- aformaldehyde, permeabilized with 0.25% Triton-X 100 in PBS, and The amino acid sequence of duck IRF7 was analysed using tools on blocked with 0.5% bovine serum albumin (BSA) for overnight. After the SMART website (http://smart.embl-heidelberg.de/). Amino acid three washes with PBS, the cells were incubated with mouse anti-Flag sequence alignment including Gallus gallus (NP_990703.1), Homo sa- antibodies (Ruiying Biological, Suzhou, China) for 12 h at 4 °C. The cells piens (NP_001563.2) and Mus musculus (NP_058546.1) was conducted were treated with goat anti-mouse Alexa 568 (Life Technologies) for 1 h by Geneious software.
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
    ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.
    [Show full text]
  • IFN-Α Wakes up Sleeping Hematopoietic Stem Cells
    NEWS AND VIEWS calcium consumption does not seem to have without increasing the risk of coronary heart 7. Aoki, K. et al. Ann. Epidemiol. 15, 598–606 (2005). such an effect. How to optimize calcium sup- disease, which has been associated with cal- 8. Langhans, N. et al. Gastroenterology 112, 280–286 13 plements for human health deserves further cium supplementation . (1997). investigation. 9. Recker, R.R. N. Engl. J. Med. 313, 70–73 (1985). 10. Yang, Y.-X. et al. J. Am. Med. Assoc. , 2947– Maybe it’s time to determine whether low- 1. Zaidi, M. Nat. Med. 13, 791–801 (2007). 296 2. Del Fattore, A. et al. Bone 42, 19–29 (2008). 2953 (2006). fat milk–based drinks taken as an alternative 3. Sobacchi, C. et al. Hum. Mol. Genet. 10, 1767–1773 11. Collazo-Clavell, M.L., Jimenez, A., Hodgson, S.F. & to the soda so frequently consumed, especially (2001). Sarr, M.G. Endocr. Pract. 10, 195–198 (2004). 4. Amling, M. et al. Nat. Med. 15, 674–681 (2009). 12. Bo-Linn, G.W. et al. J. Clin. Invest. 73, 640–647 during the early adolescent years, can attain 5. Straub, D.A. Nutr. Clin. Pract. 22, 286–296 (2007). (1984). the noble goal of keeping bones healthy— 6. Teitelbaum, S.L. Science 289, 1504–1508 (2000). 13. Bolland, M.J. BMJ 336, 262–266 (2008). IFN-α wakes up sleeping hematopoietic stem cells Emmanuelle Passegué & Patricia Ernst The cytokine interferon-α stimulates the turnover and proliferation of hematopoietic cells in vivo (pages 696–700).
    [Show full text]
  • Inactivation of Type I IFN Jak-STAT Pathway in EBV Latency
    Ning S and Wang L, J Cancer Biol Treat 2016, 3: 009 DOI: 10.24966/CBT-7546/100009 HSOA Journal of Cancer Biology and Treatment Research Article defense system, among which IRF7 is the “master” regulator of type I Inactivation of Type I IFN Interferon (IFN-I) response to pathogenic infection [4]. Robust IFN-I response during infection requires a positive feedback loop between Jak-STAT Pathway in EBV IRF7 and IFN-I [5-6]. Aberrant production of IFN-I, however, is Latency associated with autoimmune disorders and malignancies [7-9]. Thus, tight regulation of IRF7 is important in balancing the appropriate Shunbin Ning and Ling Wang* immune response to clear invading pathogens while preventing Department of Internal Medicine, Center of Excellence for Inflammation, immune-mediated pathogenesis [10]. Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, USA IFNs exert their functions through induction of IFN-Stimulated Genes (ISGs) via Jak-STAT pathways [11-13]. The IFN-I Jak-STAT pathway comprises of IFNAR1/2, Jak1, Tyk2, STAT1/2, and IRF9 [14]. Following IFN-I binding to IFNARs, signaling via protein kinases leads to tyrosine phosphorylation and activation of IFNAR1 Abstract at Y466 [15], Tyk2(Y1054/Y1055) and Jak1(Y1034/Y1035), and then to that Epstein-Barr Virus (EBV) latent infection is associated with a of STAT1(Y701) and STAT2(Y690 and S287) [16]. The phosphorylated variety of lymphomas and carcinomas. Interferon (IFN) Regulatory STAT1/2 then dimerize and associate with IRF9 to form a complex Factors (IRFs) are a family of transcription factors, among which termed interferon-stimulated gene factor 3 (ISGF3).
    [Show full text]
  • Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies Jinjong Myoung1, Shin-Ae Lee2, and Hye-Ra Lee3*
    J. Microbiol. Biotechnol. (2019), 29(12), 1873–1881 https://doi.org/10.4014/jmb.1910.10004 Research Article Review jmb Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies Jinjong Myoung1, Shin-Ae Lee2, and Hye-Ra Lee3* 1Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, College of Natural Science, Jeonbuk National University, Jeonju 54531, Republic of Korea 2Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA 3Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea Received: October 8, 2019 Revised: October 8, 2019 The innate immune response serves as a first-line-of-defense mechanism for a host against Accepted: October 24, 2019 viral infection. Viruses must therefore subvert this anti-viral response in order to establish an First published online: efficient life cycle. In line with this fact, Kaposi’s sarcoma-associated herpesvirus (KSHV) October 25, 2019 encodes numerous genes that function as immunomodulatory proteins to antagonize the host *Corresponding author immune system. One such mechanism through which KSHV evades the host immunity is by Phone: +82-44-860-1831 encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as Fax: +82-44-860-1598 E-mail: [email protected] vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis. pISSN 1017-7825, eISSN 1738-8872 Copyright© 2019 by Keywords: KSHV, viral interferon regulatory factor, immune evasion strategy, PRR-mediated The Korean Society for Microbiology signaling pathway, apoptosis pathway and Biotechnology Introduction various transcription factors.
    [Show full text]
  • Herpes Simplex Virus 1 Targets IRF7 Via ICP0 to Limit Type I IFN Induction David Shahnazaryan1,2, Rana Khalil3, Claire Wynne4, Caroline A
    www.nature.com/scientificreports OPEN Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction David Shahnazaryan1,2, Rana Khalil3, Claire Wynne4, Caroline A. Jeferies5,6, Joan Ní Gabhann‑Dromgoole1,3,6* & Conor C. Murphy1,2,6 Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV‑1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear flm, where it encounters a multi‑pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti‑viral and pro‑infammatory cytokines. However, given that HSV‑1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is signifcant interest in understanding the mechanisms employed by HSV‑1 to downregulate the anti‑viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identifed interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These fndings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target. Herpes simplex keratitis (HSK) is the commonest cause of infectious corneal blindness in the western world1. Tere are over 500,000 afected individuals in the United States (US) alone2.
    [Show full text]
  • Vs. BCR-ABL-Positive Cells to Interferon Alpha
    Schubert et al. Journal of Hematology & Oncology (2019) 12:36 https://doi.org/10.1186/s13045-019-0722-9 RESEARCH Open Access Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL- positive cells to interferon alpha Claudia Schubert1, Manuel Allhoff2, Stefan Tillmann1, Tiago Maié2, Ivan G. Costa2, Daniel B. Lipka3, Mirle Schemionek1, Kristina Feldberg1, Julian Baumeister1, Tim H. Brümmendorf1, Nicolas Chatain1† and Steffen Koschmieder1*† Abstract Background: Interferon alpha (IFNa) monotherapy is recommended as the standard therapy in polycythemia vera (PV) but not in chronic myeloid leukemia (CML). Here, we investigated the mechanisms of IFNa efficacy in JAK2V617F- vs. BCR-ABL-positive cells. Methods: Gene expression microarrays and RT-qPCR of PV vs. CML patient PBMCs and CD34+ cells and of the murine cell line 32D expressing JAK2V617F or BCR-ABL were used to analyze and compare interferon-stimulated gene (ISG) expression. Furthermore, using CRISPR/Cas9n technology, targeted disruption of STAT1 or STAT2, respectively, was performed in 32D-BCR-ABL and 32D-JAK2V617F cells to evaluate the role of these transcription factors for IFNa efficacy. The knockout cell lines were reconstituted with STAT1, STAT2, STAT1Y701F, or STAT2Y689F to analyze the importance of wild-type and phosphomutant STATs for the IFNa response. ChIP-seq and ChIP were performed to correlate histone marks with ISG expression. Results: Microarray analysis and RT-qPCR revealed significant upregulation of ISGs in 32D-JAK2V617F but downregulation in 32D-BCR-ABL cells, and these effects were reversed by tyrosine kinase inhibitor (TKI) treatment. Similar expression patterns were confirmed in human cell lines, primary PV and CML patient PBMCs and CD34+ cells, demonstrating that these effects are operational in patients.
    [Show full text]
  • Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
    ARTICLE Received 30 May 2013 | Accepted 21 Nov 2013 | Published 20 Dec 2013 DOI: 10.1038/ncomms3990 Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation Jesse W. Williams1, Melissa Y. Tjota2,3, Bryan S. Clay2, Bryan Vander Lugt4, Hozefa S. Bandukwala2, Cara L. Hrusch5, Donna C. Decker5, Kelly M. Blaine5, Bethany R. Fixsen5, Harinder Singh4, Roger Sciammas6 & Anne I. Sperling1,2,5 Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation. 1 Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 2 Committee on Immunology, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 3 Medical Scientist Training Program, University of Chicago, 924 E.
    [Show full text]
  • Type I Interferon/IRF7 Axis Instigates Chemotherapy-Induced Immunological Dormancy in Breast Cancer
    Oncogene https://doi.org/10.1038/s41388-018-0624-2 ARTICLE Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer 1,2,8 1 1 1,2 3 4,5 Qiang Lan ● Sanam Peyvandi ● Nathalie Duffey ● Yu-Ting Huang ● David Barras ● Werner Held ● 6 3,4,5 6 6 1,2 François Richard ● Mauro Delorenzi ● Christos Sotiriou ● Christine Desmedt ● Girieca Lorusso ● Curzio Rüegg1,2,7 Received: 18 April 2018 / Revised: 27 September 2018 / Accepted: 6 November 2018 © The Author(s) 2018. This article is published with open access Abstract Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER−) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER− breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of β 1234567890();,: 1234567890();,: the IRF7/IFN- /IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4+/CD8+ T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-β production. Presence of IFN-β in the circulation of ER− breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival.
    [Show full text]
  • CDP/Cut Is the DNA-Binding Subunit of Histone Gene Transcription Cell
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11516-11521, October 1996 Biochemistry CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: A mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F (proliferation/gene expression/cyclin-dependent kinase/tumor suppressor) A. J. VAN WIJNEN*, M. F. vAN GURP*, M. C. DE RIDDER*, C. TUFARELLIt, T. J. LAST*, M. BIRNBAUM*, P. S. VAUGHAN*, A. GIORDANOt, W. KREK§, E. J. NEUFELDt, J. L. STEIN*, AND G. S. STEIN* *Department of Cell Biology, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655; tDivision of Hematology, Enders 720, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115; tInstitute for Cancer Research and Molecular Medicine, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and §Friedrich-Miescher Institut, Postfach 2543, CH-4002 Basel, Switzerland Communicated by Sheldon Penman, Massachusetts Institute of Technology, Cambridge, MA, June 26, 1996 (received for review June 5, 1996) ABSTRACT Transcription of the genes for the human. 2/pl3O, and p107), CDKs, and cyclins A and E (14-17). histone proteins H4, H3,.H2A, H2B, and Hi is activated at the Variation in the composition of E2F containing multiprotein G1/S phase transition of the cell cycle. We have previously complexes may be functionally relevant for the timing and shown that the promoter complex HiNF-D, which interacts extent to which cell cycle controlled genes are activated or with cell cycle control elements in multiple histone genes, repressed. contains the key cell cycle factors cyclin A, CDC2, and a Expression of the genes for the histone proteins H4, H3, retinoblastoma (pRB) protein-related protein.
    [Show full text]
  • Induced IFN Regulatory Factor 1 Transcription Factor by Myd88 in Toll-Like Receptor-Dependent Gene Induction Program
    Evidence for licensing of IFN-␥-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program Hideo Negishi*, Yasuyuki Fujita*, Hideyuki Yanai*, Shinya Sakaguchi*, Xinshou Ouyang*, Masahiro Shinohara†, Hiroshi Takayanagi†, Yusuke Ohba*, Tadatsugu Taniguchi*‡, and Kenya Honda* *Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; and †Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan Contributed by Tadatsugu Taniguchi, August 18, 2006 The recognition of microbial components by Toll-like receptors (TLRs) In the present study we investigated how IFN-␥-induced IRF1 initiates signal transduction pathways, which trigger the expression contributes to TLR-mediated signaling. We demonstrate that of a series of target genes. It has been reported that TLR signaling is IRF1 forms a complex with MyD88, similar to the case of IRF4, enhanced by cytokines such as IFN-␥, but the mechanisms underlying IRF5, and IRF7. We also provide evidence that IRF1 induced this enhancement remain unclear. The MyD88 adaptor, which is by IFN-␥ is activated by MyD88, which we refer to as ‘‘licensing,’’ essential for signaling by many TLRs, recruits members of the IFN and migrates rapidly into the nucleus to mediate an efficient regulatory factor (IRF) family of transcription factors, such as IRF5 and induction of IFN-␤, iNOS, and IL-12p35. Our study therefore IRF7, to evoke the activation of TLR target genes. In this study we revealed that IRF1 is a previously unidentified member of the demonstrate that IRF1, which is induced by IFN-␥, also interacts with multimolecular complex organized via MyD88 and that the IRF1 and is activated by MyD88 upon TLR activation.
    [Show full text]
  • Irf1) Signaling Regulates Apoptosis and Autophagy to Determine Endocrine Responsiveness and Cell Fate in Human Breast Cancer
    INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER A Dissertation Submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology & Biophysics By Jessica L. Roberts, B.S. Washington, DC September 27, 2013 Copyright 2013 by Jessica L. Roberts All Rights Reserved ii INTERFERON REGULATORY FACTOR-1 (IRF1) SIGNALING REGULATES APOPTOSIS AND AUTOPHAGY TO DETERMINE ENDOCRINE RESPONSIVENESS AND CELL FATE IN HUMAN BREAST CANCER Jessica L. Roberts, B.S. Thesis Advisor: Robert Clarke, Ph.D. ABSTRACT Interferon regulatory factor-1 (IRF1) is a nuclear transcription factor and pivotal regulator of cell fate in cancer cells. While IRF1 is known to possess tumor suppressive activities, the role of IRF1 in mediating apoptosis and autophagy in breast cancer is largely unknown. Here, we show that IRF1 inhibits antiapoptotic B-cell lymphoma 2 (BCL2) protein expression, whose overexpression often contributes to antiestrogen resistance. We proposed that directly targeting the antiapoptotic BCL2 members with GX15-070 (GX; obatoclax), a BH3-mimetic currently in clinical development, would be an attractive strategy to overcome antiestrogen resistance in some breast cancers. Inhibition of BCL2 activity, through treatment with GX, was more effective in reducing the cell density of antiestrogen resistant breast cancer cells versus sensitive cells, and this increased sensitivity correlated with an accumulation of autophagic vacuoles. While GX treatment promoted autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulated.
    [Show full text]