Cysteine‑Rich 61‑Associated Gene Expression Profile Alterations in Human Glioma Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2). -
A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria. -
Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes
[CANCER RESEARCH 64, 6453–6460, September 15, 2004] Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes Be´atrice Orsetti,1 Me´lanie Nugoli,1 Nathalie Cervera,1 Laurence Lasorsa,1 Paul Chuchana,1 Lisa Ursule,1 Catherine Nguyen,2 Richard Redon,3 Stanislas du Manoir,3 Carmen Rodriguez,1 and Charles Theillet1 1Ge´notypes et Phe´notypes Tumoraux, EMI229 INSERM/Universite´ Montpellier I, Montpellier, France; 2ERM 206 INSERM/Universite´ Aix-Marseille 2, Parc Scientifique de Luminy, Marseille cedex, France; and 3IGBMC, U596 INSERM/Universite´Louis Pasteur, Parc d’Innovation, Illkirch cedex, France ABSTRACT 17q12-q21 corresponding to the amplification of ERBB2 and collinear genes, and a large region at 17q23 (5, 6). A number of new candidate Chromosome 17 is severely rearranged in breast cancer. Whereas the oncogenes have been identified, among which GRB7 and TOP2A at short arm undergoes frequent losses, the long arm harbors complex 17q21 or RP6SKB1, TBX2, PPM1D, and MUL at 17q23 have drawn combinations of gains and losses. In this work we present a comprehensive study of quantitative anomalies at chromosome 17 by genomic array- most attention (6–10). Furthermore, DNA microarray studies have comparative genomic hybridization and of associated RNA expression revealed additional candidates, with some located outside current changes by cDNA arrays. We built a genomic array covering the entire regions of gains, thus suggesting the existence of additional amplicons chromosome at an average density of 1 clone per 0.5 Mb, and patterns of on 17q (8, 9). gains and losses were characterized in 30 breast cancer cell lines and 22 Our previous loss of heterozygosity mapping data pointed to the primary tumors. -
Inactivation of Type I IFN Jak-STAT Pathway in EBV Latency
Ning S and Wang L, J Cancer Biol Treat 2016, 3: 009 DOI: 10.24966/CBT-7546/100009 HSOA Journal of Cancer Biology and Treatment Research Article defense system, among which IRF7 is the “master” regulator of type I Inactivation of Type I IFN Interferon (IFN-I) response to pathogenic infection [4]. Robust IFN-I response during infection requires a positive feedback loop between Jak-STAT Pathway in EBV IRF7 and IFN-I [5-6]. Aberrant production of IFN-I, however, is Latency associated with autoimmune disorders and malignancies [7-9]. Thus, tight regulation of IRF7 is important in balancing the appropriate Shunbin Ning and Ling Wang* immune response to clear invading pathogens while preventing Department of Internal Medicine, Center of Excellence for Inflammation, immune-mediated pathogenesis [10]. Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, USA IFNs exert their functions through induction of IFN-Stimulated Genes (ISGs) via Jak-STAT pathways [11-13]. The IFN-I Jak-STAT pathway comprises of IFNAR1/2, Jak1, Tyk2, STAT1/2, and IRF9 [14]. Following IFN-I binding to IFNARs, signaling via protein kinases leads to tyrosine phosphorylation and activation of IFNAR1 Abstract at Y466 [15], Tyk2(Y1054/Y1055) and Jak1(Y1034/Y1035), and then to that Epstein-Barr Virus (EBV) latent infection is associated with a of STAT1(Y701) and STAT2(Y690 and S287) [16]. The phosphorylated variety of lymphomas and carcinomas. Interferon (IFN) Regulatory STAT1/2 then dimerize and associate with IRF9 to form a complex Factors (IRFs) are a family of transcription factors, among which termed interferon-stimulated gene factor 3 (ISGF3). -
Expression Profiling of KLF4
Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE -
Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer
Research Article Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer Rajasree Menon,1 Qing Zhang,3 Yan Zhang,1 Damian Fermin,1 Nabeel Bardeesy,4 Ronald A. DePinho,5 Chunxia Lu,2 Samir M. Hanash,3 Gilbert S. Omenn,1 and David J. States1 1Center for Computational Medicine and Biology and 2Pediatric Endocrinology, University of Michigan, Ann Arbor, Michigan; 3Fred Hutchinson Cancer Research Center, Seattle, Washington; and 4Center for Cancer Research, Massachusetts General Hospital; 5Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts Abstract database are scored as high, medium, or low confidence, reflecting the amount of cumulative evidence in support of the existence of a To assess the potential of tumor-associated, alternatively particular alternatively spliced sequence. Evidence is collected from spliced gene products as a source of biomarkers in biological clustering of ESTs, mRNA sequences, and gene model predictions. fluids, we have analyzed a large data set of mass spectra We modified the ECgene database to include three-frame trans- derived from the plasma proteome of a mouse model of lations of the cDNA sequences (5) to determine the occurrence of human pancreatic ductal adenocarcinoma. MS/MS spectra novel splice variant proteins. An important development in recent were interrogated for novel splice isoforms using a non- years is the substantial improvement in tandem mass spectrometry redundant database containing an exhaustive three-frame instrumentation for proteomics, allowing in-depth analysis and translation of Ensembl transcripts and gene models from confident identifications even for proteins coded by mRNA ECgene. -
Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies Jinjong Myoung1, Shin-Ae Lee2, and Hye-Ra Lee3*
J. Microbiol. Biotechnol. (2019), 29(12), 1873–1881 https://doi.org/10.4014/jmb.1910.10004 Research Article Review jmb Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies Jinjong Myoung1, Shin-Ae Lee2, and Hye-Ra Lee3* 1Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, College of Natural Science, Jeonbuk National University, Jeonju 54531, Republic of Korea 2Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA 3Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea Received: October 8, 2019 Revised: October 8, 2019 The innate immune response serves as a first-line-of-defense mechanism for a host against Accepted: October 24, 2019 viral infection. Viruses must therefore subvert this anti-viral response in order to establish an First published online: efficient life cycle. In line with this fact, Kaposi’s sarcoma-associated herpesvirus (KSHV) October 25, 2019 encodes numerous genes that function as immunomodulatory proteins to antagonize the host *Corresponding author immune system. One such mechanism through which KSHV evades the host immunity is by Phone: +82-44-860-1831 encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as Fax: +82-44-860-1598 E-mail: [email protected] vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis. pISSN 1017-7825, eISSN 1738-8872 Copyright© 2019 by Keywords: KSHV, viral interferon regulatory factor, immune evasion strategy, PRR-mediated The Korean Society for Microbiology signaling pathway, apoptosis pathway and Biotechnology Introduction various transcription factors. -
Herpes Simplex Virus 1 Targets IRF7 Via ICP0 to Limit Type I IFN Induction David Shahnazaryan1,2, Rana Khalil3, Claire Wynne4, Caroline A
www.nature.com/scientificreports OPEN Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction David Shahnazaryan1,2, Rana Khalil3, Claire Wynne4, Caroline A. Jeferies5,6, Joan Ní Gabhann‑Dromgoole1,3,6* & Conor C. Murphy1,2,6 Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV‑1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear flm, where it encounters a multi‑pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti‑viral and pro‑infammatory cytokines. However, given that HSV‑1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is signifcant interest in understanding the mechanisms employed by HSV‑1 to downregulate the anti‑viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identifed interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These fndings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target. Herpes simplex keratitis (HSK) is the commonest cause of infectious corneal blindness in the western world1. Tere are over 500,000 afected individuals in the United States (US) alone2. -
Annals of Medical and Clinical Oncology Chen C, Et Al
Annals of Medical and Clinical Oncology Chen C, et al. Ann med clin Oncol 3: 125. Short Commentary DOI: 10.29011/AMCO-125.000125 Commentary Referring to Pericyte FAK Negatively Regulates Gas6/ Axl Signalling To Suppress Tumour Angiogenesis and Tumour Growth Chen Chen, Hongyan Wang, Binfeng Wu and Jinghua Chen* Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China *Corresponding author: Jinghua Chen, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China Citation: Chen C, Wang H, Wu B, Chen J (2020) Commentary Referring to Pericyte FAK Negatively Regulates Gas6/Axl Signalling To Suppress Tumour Angiogenesis and Tumour Growth. Ann med clin Oncol 3: 125. DOI: 10.29011/AMCO-125.000125 Received Date: 07 December, 2020; Accepted Date: 20 December, 2020; Published Date: 28 December, 2020 The published research article utilized multiple mouse Interestingly, knockout of FAK was specific to pericytes other models including melanoma, lung carcinoma and pancreatic B-cell than endothelial cells, mice models demonstrated that loss of insulinoma. Two hallmarks of cancer [1] such as angiogenesis and FAK from pericytes significantly promoted ɑ-SMA expression tumour growth had been evaluated. Two major molecules FAK (common metastatic biomarker) and NG-2 (typical angiogenesis (focal adhesion kinase 1) and Axl undertook the innovative roles related biomarker) in three cancer cells model. It suggested that of this elegant paper. They both belong to protein Tyrosine Kinase FAK may function as the tumour suppressive gene. However, (TK) family [2]. -
Cysteine-Rich 61 (Cyr61): a Biomarker Reflecting Disease Activity In
Fan et al. Arthritis Research & Therapy (2019) 21:123 https://doi.org/10.1186/s13075-019-1906-y RESEARCHARTICLE Open Access Cysteine-rich 61 (Cyr61): a biomarker reflecting disease activity in rheumatoid arthritis Yong Fan†, Xinlei Yang†, Juan Zhao, Xiaoying Sun, Wenhui Xie, Yanrong Huang, Guangtao Li, Yanjie Hao and Zhuoli Zhang* Abstract Background: Numerous preclinical studies have revealed a critical role of cysteine-rich 61 (Cyr61) in the pathogenesis of rheumatoid arthritis (RA). But there is little literature discussing the clinical value of circulation Cyr61 in RA patients. The aim of our study is to investigate the serum Cyr61 level and its association with disease activity in RA patients. Methods: A training cohort was derived from consecutive RA patients who visited our clinic from Jun 2014 to Nov 2018. Serum samples were obtained at the enrollment time. To further confirm discovery, an independent validation cohort was set up based on a registered clinical trial. Paired serum samples of active RA patients were respectively collected at baseline and 12 weeks after uniformed treatment. Serum Cyr61 concentration was detected by enzyme-linked immunosorbent assay. The comparison of Cyr61 between RA patients and controls, the correlation between Cyr61 levels with disease activity, and the change of Cyr61 after treatment were analyzed by appropriate statistical analyses. Results: A total of 177 definite RA patients and 50 age- and gender-matched healthy controls were enrolled in the training cohort. Significantly elevated serum Cyr61 concentration was found in RA patients, demonstrating excellent diagnostic ability to discriminate RA from healthy controls (area under the curve (AUC) = 0.98, P < 0.001). -
Modulating Antiviral Response Via CRISPR–Cas Systems
viruses Review Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems Sergey Brezgin 1,2,3,† , Anastasiya Kostyusheva 1,†, Ekaterina Bayurova 4 , Elena Volchkova 5, Vladimir Gegechkori 6 , Ilya Gordeychuk 4,7, Dieter Glebe 8 , Dmitry Kostyushev 1,3,*,‡ and Vladimir Chulanov 1,3,5,‡ 1 National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; [email protected] (S.B.); [email protected] (A.K.); [email protected] (V.C.) 2 Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia 3 Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia 4 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; [email protected] (E.B.); [email protected] (I.G.) 5 Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia; [email protected] 6 Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia; [email protected] 7 Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia 8 National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected] † Co-first authors. Citation: Brezgin, S.; Kostyusheva, ‡ Co-senior authors. A.; Bayurova, E.; Volchkova, E.; Gegechkori, V.; Gordeychuk, I.; Glebe, Abstract: Viral infections cause a variety of acute and chronic human diseases, sometimes resulting D.; Kostyushev, D.; Chulanov, V. Immunity and Viral Infections: in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics.