A Formaldehyde-Free, Sustainable Alternative for the Engineered

Total Page:16

File Type:pdf, Size:1020Kb

A Formaldehyde-Free, Sustainable Alternative for the Engineered Paper A Formaldehyde-Free, Technical Sustainable Alternative for the Engineered Wood Industry By Dr. Gregory J. Tudryn ngineered woods, such as particle come under substantial scrutiny due board and medium density to rising costs (now accounting for Ecovative is a recipient of RadTech’s fiberboard (MDF), are common upward of 30% of the product cost) 2014 Emerging Technology Award. Ewithin the furniture industry as each and detrimental human health effects. provides an inexpensive alternative to State regulations on the emission of solid wood construction. Although the formaldehyde from composite wood physical performance of particle board products (such particle board, MDF and MDF is adequate for furniture and hardwood plywood) and federal applications, there are significant amendments to the Toxic Substances legislative drivers for safer structural Control Act set formaldehyde emission core materials to limit the emission limits for composite wood products of volatile organic compounds. The sold in the United States. The National most common resins are urea Toxicology Program most recently formaldehyde (UF) or methylene added formaldehyde, a precursor to diphenyl diisocyanate (MDI), typically engineered woods, to the federal list constituting between 7% and 10% of of carcinogens. the final product’s total mass, which Ecovative has begun to develop a emit toxic volatiles either during or drop-in replacement for engineered post production. wood products (Myco Board™) which These resins instituted in the is economically competitive and production of traditional engineered intrinsically safe. This mycological wood products (UF, MDI) have recently biocomposite is comprised of biobased Figure 1 Mycelium, agricultural waste and grown biomaterial (Left) 140x magnification of mycelium; (Middle) agricultural waste from the cotton industry; (Right) grown biomaterial that serves as protective packaging, the mycelium is white. 40 RADTECH REPORT ISSUE 2 2014 Paper Table 1 Physical performance metrics for flat engineered wood products at0.50 ” thickness Metric Myco Board™ Myco Board™ Laminate MDF Technical Density (lbs/ft3) 30 37 53 Modulus of Rupture (psi) 820 1,700 1,595 Modulus of Elasticity (psi) 120,400 336,100 217,500 Screw Hold Strength (lbf) 110 110 132 Internal Bond Strength (lbf) 55 55 44 Energy to Produce (MJ/ft3) 79.5 98.1 234.9 Formaldehyde Emission (ppm) <0.001 <0.001 5 materials (ASTM D6866), which grown using biological resins, and is resources to manufacture materials, is unachievable with conventional comprised of lignocellulosic agricultural this material takes advantage of engineered wood products that rely byproducts bound cohesively into regionally sourced agricultural waste on synthetic resins. This product is designed shapes by filamentous to grow the biological resin, which literally grown, and is composed of fungal tissue (mycelium), analogous binds the desired product in a self- regionally sourced agricultural waste to traditional composite fillers and assembling process. Fungal vegetative that is bound with mycelium. resins, respectively (Figure 1). tissue (mycelium) propagates and The uniting of this biological The UV surface coating, developed binds to the agricultural fillers as it composite with UV-curable natural by Dr. James Crivello (Rensselaer grows apically into an interconnected resins enables this biotechnology as Polytechnic Institute), is comprised of fibrous network, analogous to addition- a finished boardstock, molded stock epoxidized vegetable oils and onium reaction synthetic resins forming in and paneling for a broad range of salt photoinitiators. situ within a composite material. demanding engineered wood markets The core material (mycological The mycelium derives its network with both structural and non-structural biocomposite) challenges the current strength from chitinous cell walls, product offerings. UV curing of natural paradigm of synthetic materials imparting high flame retardance and elastic modulus, and low thermal resins on mycological biocomposites and resins. Rather than using high- embodied energy processes and finite conductivity to the composite through enables the tailoring of surface features such as gloss, texture, coloration and embedding of antimicrobial agents Figure 2 while adding to overall mechanical Molded mycological composite engineered performance, all with minimal wood material additive and process time. This value-add is important to markets such as engineered woods, and is also applicable to coatings in Ecovative’s core technology of protective packaging using a sustainable, rapid, cost-effective UV process. This investigation highlights the use of two biologically inspired Features molded in place without subtractive processing resins—a self-propagating core bioresin and labor such as milling or cutting in replacement of formaldehyde, and a naturally derived UV-crosslinked surface coating. The core material is ISSUE 2 2014 RADTECH REPORT 41 Paper method (convective or conductive). Figure 3 Thermally activated surface coatings are prepared from epoxidized linseed Mechanical testing fixtures oil, applied manually (≤8g/ft2) and Technical cured at a temperature of 180°F for a duration of 10 minutes. UV-activated surface coatings are prepared from epoxidized linseed oil and applied manually (≤8g/ft2), using a 2 x 30 watt UV-C lamp (λ=254 nm) to cure at room temperature at a target distance of 48 inches for a duration of 10 minutes to ensure completion. Mechanical testing fixtures used for testing mycological Mechanical Testing composites to provide (a) Testing was performed in replicates of modulus of elasticity, modulus 12 on Instron testing machines 3345 of rupture, and (b) screw and 4411, using ASTM D1037 for Elastic withdraw strength following modulus, modulus of rupture and ASTM D1037. screw withdraw strength, ASTM C303 (EIN323) for density and externally for formaldehyde content using ASTM E1333 (EIN 120) (Figure 3). Alongside the sustainable and clean this high-Tg biopolymer. The ability content in excess of 10% [m:m], which to auto-generate tissue passively is comparable to the current state- solution to engineered wood arises the throughout the composite offers a of-the-art. Post processing of core desire to have an equally eco-conscious substantial reduction in resin cost and board material is denoted by drying coating. Applications of external processing energy—while remaining renewable, as well as cost- and Figure 4 performance-competitive (Table 1). Additionally, this self-assembling Modulus of elasticity for mycological composites process offers the ability to grow using convective processing precision features into the final product without further subtractive downstream processing or wasted material (Figure 2). Materials Preparation Corn stover agricultural waste is industrially sourced, profiled for nutrition and sorted using market grade mesh sizing (fine to coarse). Sorted materials are grown separately, intermixed or layered to observe the effect of particle size on material packing and surface features. All Front axis denotes corn stover filler particle subtype, right material is autoclaved prior to axis denotes product treatment (foam referring to low density mycological composite analogs). inoculation (120°C, 15 psi, one hour), and incubated passively in warehouse conditions to achieve internal resin 42 RADTECH REPORT ISSUE 2 2014 Paper surface coating properties. At Figure 5 relatively higher contact temperature, conductively dried samples have Modulus of elasticity for mycological composites efficient heat transfer to the mycelium using conductive processing resin, promoting a uniform distribution Technical of fused structural β-glucans (predominantly bound to the structural chitin layer of the mycelial cell wall). This resin sets on the product surface, preventing excess penetration of linseed oil, thus improving the UV exposure during the crosslinking of triglycerides by minimizing inaccessible reactive sites beneath the surface, and as such is reflected in the higher relative mechanical performance. Mycological composites prepared using fine particles offer good overall Front axis denotes corn stover filler particle subtype, right space filling and packing, resulting axis denotes product treatment (foam referring to low density in the highest density (43.6lb/ft3) mycological composite analogs). and well-resolved features. However, these composites are susceptible to fracture due to a relatively low aspect coatings each offer unique drawbacks. pinene, limonene and others. New ratio of fine particles. Coarse particles Liquid paint requires extensive photoinitiators demonstrate rapid provide less packing ability under preparation and often has relatively a curing of readily prepared unsaturated the same conditions as fine particles, high installation cost and low drying oils or commercially available but provide more desirable flexural throughput. Laminate materials have epoxidized vegetable oils, facilitating performance due to higher aspect ratios the ability to be grown into the core a rapid processing route that remains of lignocellulosic filler reinforcement 3 material without additional resin; sustainable and cost-effective, as well at lower density (21.9lb/ft ). The however, the necessity for edge as impart desirable surface coverage open-cell structure of uniform coarse banding or T-molding remains. and finish characteristics. particle results in a rougher surface Vinyl wrapping offers better and higher compressibility than the
Recommended publications
  • Microscopic Study on the Composites of Wood and Polypropylene*1
    「森林総合研究所研究報告」(Bulletin of FFPRI),Vol. 1, No. 1 (No.382), 115-122, March, 2002 論 文(Original Article) Microscopic Study on the Composites of Wood and Polypropylene*1 FUJII Tomoyuki*2 and QIN Te-fu *3 Abstract Optical and scanning electron microscopies coupled with a thin-sectioning method and a chemical treatment to remove cell wall material were adopted to investigate morphologically the dispersion of wood fillers and the interface between the wood and polypropylene (PP) matrices in injection-molding composites. Wood fillers were well dispersed in PP matrix with a tendency toward longitudinal and concentric orientation. The interface between wood and PP was well illustrated by the chemical digestion method. It was demonstrated with this method that PP can penetrate into macro-cavities such as fiber lumina inside wood particles through cracks of inter- and intra-wall fractures and comprises a three-dimensional network within the particles and also connecting to PP matrix outside. Wood fillers were always completely isolated and covered by PP probably owing to their high wetability at their interface, although this did not directly result in stiff chemical bonding. This suggests that the chemical bonding of wood fillers and PP matrix is more important for the improvement of the adhesion properties than the surface compatibility. Keywords: composite wood, polypropylene, morphology, SEM, optical microscopy Introduction is that the resulting composites usually have a significantly reduced impact and tensile strength due to poor adhesion There has recently been a dramatic increase of interest between the hydrophilic filler material and hydrophobic in using biomass such as wood fibers, oil palm fibers and thermoplastic.
    [Show full text]
  • Overview of Baltic Forest and Wood Industry | I
    23. Internationales Holzbau-Forum IHF 2017 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 1 Overview of Baltic Forest and Wood Industry Ieva Erele Latvian Forest Industry Federation Riga, Latvia Henrik Välja Estonian Forest and Wood Industries Association Kristaps Klauss Latvian Forest Industry Federation Riga, Latvia 23. Internationales Holzbau-Forum IHF 2017 2 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 23. Internationales Holzbau-Forum IHF 2017 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 3 Overview of Baltic Forest and Wood Industry We can certainly call Baltic states the land of forests. Almost every inhabitant is related to forest, forestry and forest products in one or another way. Since long ago wood has been used in heating, construction, production of furniture and other household items. Today forest sector and its wood processing industry have developed into one of the most important sectors of the regional economy. And despite the fact that it occupies only 4,1% of the EU's territory, the commercial forest stock accounts for 6,3% of the EU. Forest has deep roots into Baltic States culture traditions, as well as provides opportunities for spending free time in forest hunting, in sports activities or picking berries and mush- rooms. And furthermore, there are large nature values in our forests that in some cases are unique not only on European, but also global level. However, it’s not an opportunity because it’s simply here. The forest that grows by itself represents beautiful nature values, but it becomes „the green gold” because we have learned to use and manage it wisely – by protecting nature values, by securing resources for national growth and contributing to the wellbeing of our society.
    [Show full text]
  • Wood Industry Report
    Wood Industry Report Submitted by Tim Jenks Prosperity Region 3 Wood Industry Proposed Five Year Action Plan Introduction The Wood Products Industries form a broad sector of business activity in Northern Michigan, and particularly in the eleven counties of Region 3. An MSU Extension study in 2012 described the forest industry as “Michigan’s third largest manufacturing sector,” supporting “about 136,000 jobs and adding $17 billion to Michigan’s economy.” (MSUE, 2012) While timber harvests could increase somewhat above their current levels, the greatest opportunity for economic growth lies in the added value provided by manufacturing wood products. Timber harvest, sawmill operations, and wood products manufacturing represent traditional industries for the people of this area of Michigan. The sector offers long- term sustainability, opportunities for positive environmental impact, and lifestyle compatibility. The actions proposed in this section will work to stabilize and maintain the existing industry, as well as to promote the establishment and growth of new entrepreneurial businesses. Overview of the Wood Products Industry Sector The “Wood Industry” sector includes a supply chain of related goods and services, ranging from harvesters to cut the trees to skilled crafts who create finished products. In addition, the sector supports large trucking operations, heavy equipment for harvesting and loading, maintenance services, and other support businesses. Harvesters Harvesters comprise a number of small businesses with a large investment in capital equipment. They sometimes own “tree farm” land, but more often bid on contracts to cut timber, either in behalf of a sawmill, or to sell independently to a sawmill. Northern Michigan’s forest lands – including extensive Federal and State holdings – continue to experience net growth every year.
    [Show full text]
  • Naval Stores Review and JOURNAL of TRADE
    Naval Stores Review AND JOURNAL OF TRADE A WEEKLY PAPER FOR NAVAL STORES PRODUCERS, FACTORS, EXPORTERS AND DEALERS, AND MANUFACTURERS OF SOAPS, VARNISHES, PAPER, PRINTING INKS, ETC. “Vor. XXX1, No: 4 SAVANNAH, GA., SATURDAY, APRIL 23, 1921 _ Price $5.00 PER ANNUM J. A. G. CARSON, President H. L. KAYTON, Vice-President J. A. G. CARSON, Jr., Vice-President W. H. BARBER CO. C. H. CARSON, Vice-President at Jacksonville 3650 SOUTH HOMAN AVENUE CHICAGO, ILL. Carson Rosin, Turpentine Naval Stores Company Pine Oil, Etc. Organized in 1879. Oldest House in the Business. DIRECT SHIPMENT FROM SOUTH. BUYERS, FACTORS IT WILL PAY YOU TO -ECURE OUR PRICES. AND PRODUCERS, PLACE YOUR OFFERS WITH US. WHOLESALE GROCERS PRINCIPAL OFFICE BRANCH OFFICE SAVANNAH, GEORGIA JACKSONVILLE, FLORIDA SALES DEPARTMENT National Bank Building Atlantic National Bank Building With an organization unsurpassed and ample means at our Gillican-Chipley command, our facilities for handling your business are second to none Company, Inc. ‘WE INVITE YOUR CORRESPONDENCE NEW ORLEANS, LA. DOMESTIC SALES OFFICES AND AGENCIES IT i Columbia Naval Stores Company OF DELAWARE Progyced, Digtiied ond Oistriduted Fy GILLICAN-CHIPL Head Office: SAVANNAH, GA. COMPANY ine. NEW ORLEANS, LA. U.S.A. TEMAND RURE GUA TURPENTINE ) NEW YORK - - : x . 17 Battery Place BOSTON = - - 88 Broad Street, Room 322 PRODUCERS, DEALERS PHILADELPHIA Dowdy Bros, Lafayette Building AND PITTSBURGH E. E. Zimmerman, Bessemer Building EXPORTERS CHICAGO - - 155 North Clark Street CINCINNATI - 2 - - 320 Gwynne Building OF CLEVELAND - 372 Kirby Building, (Grund & Krause) DETROIT - Western Rosin & Turpentine Co., Palmer Ave. Rosin—Turpentine - SAVANNAH WEEKLY NAVAL STORES REVIEW AND JOURNAL OF TRADE JOHN E.
    [Show full text]
  • Adaptive Model Building Framework for Production Planning in the Primary Wood Industry
    Article Adaptive Model Building Framework for Production Planning in the Primary Wood Industry Matthias Kaltenbrunner * , Maria Anna Huka and Manfred Gronalt Institute of Production and Logistics, Department of Economics and Social Sciences, BOKU–University of Natural Resources and Life Science, Feistmantelstrasse 4, 1180 Vienna, Austria; [email protected] (M.A.H.); [email protected] (M.G.) * Correspondence: [email protected] Received: 29 October 2020; Accepted: 23 November 2020; Published: 26 November 2020 Abstract: Production planning models for the primary wood industry have been proposed for several decades. However, the majority of the research to date is concentrated on individual cases. This paper presents an integrated adaptive modelling framework that combines the proposed approaches and identifies evolving planning situations. With this conceptual modelling approach, a wide range of planning issues can be addressed by using a solid model basis. A planning grid along the time and resource dimensions is developed and four illustrative and interdependent application cases are described. The respective mathematical programming models are also presented in the paper and the prerequisites for industrial implementation are shown. Keywords: production planning; sawmill; modelling framework; mathematical programming; integrated planning 1. Introduction In production planning, the quantities to be produced are planned taking into account capacities, processes, the availability of raw materials and demanded products. In the primary wood industry, logs are used as raw materials in sawmills and processed into many intermediate products for further processing. These value-adding processes are usually carried out at one location. Three different value-added stages—sawing, drying and planing—are performed by a sawmill.
    [Show full text]
  • Forest Sector and Primary Forest Products Industry Contributions to the Economies of the Southern States: 2011 Update
    J. For. 113(2):205–209 BRIEF COMMUNICATION http://dx.doi.org/10.5849/jof.14-054 economics Forest Sector and Primary Forest Products Industry Contributions to the Economies of the Southern States: 2011 Update Consuelo Brandeis and Donald G. Hodges The analysis in this article provides an update on the southern forest sector economic activity after the down- 2009 figures. Information on the economic turn experienced in 2008–2009. The analysis was conducted using Impact Analysis for Planning (IMPLAN) software contribution of forest industries and trends in and data sets for 2009 and 2011 and results from the USDA Forest Service Timber Products Output latest survey of roundwood consumption before and through primary wood processing mills. Although improving economic conditions are reflected by increased mill roundwood the recession can be found in Hodges et al. consumption during 2011, the forest industry’s economic contribution improved slightly but not across all states. At the (2012) and Brandeis et al. (2012). regional scale, the sector displayed a downward trend in employment, value added, and number of active primary mills. Data Sources and Methodology Keywords: southern forest products industry, economic contribution, economic contribution, timber harvest, We conducted two analyses, one esti- North American Industry Classification System (NAICS) mating the economic contribution of the forest sector and one estimating the contri- Ͼ bution of a subset of industries compris- he southern forest products sector starts dropped from a high of 2 million units ing primary forest products mills. Primary makes significant contributions to to a low of 554,000 units (Census Bureau mills use logs, either whole or chipped, to the economies of the southern states 2014).
    [Show full text]
  • Evaluation of Niche Markets for Small Scale Forest Products Companies
    Evaluation of Niche Markets For Small Scale Forest Products Companies Jan J. Hacker Resource Analytics May, 2006 Federal Project Number: MN 03-DG-11244225-492 This Report was Prepared Under an Award from the U.S.D.A. Forest Service and WestCentral Wisconsin Regional Planning Commission 1 Table of Contents 1.0 Introduction.....................................................................................................................3 2.0 Niche Markets in General ...............................................................................................4 3.0 Efforts Undertaken to Help Industries Identify and Enter Niche Markets .....................6 3.1 Direct Technical Assistance to Forest Products Firms .........................................7 3.2 Specialized Research and Marketing Assistance..................................................8 3.3 Establishment of Specialized Networks & Locally Based Programs .................11 4.0 Niche Markets Due to Technology...............................................................................21 5.0 Niche Markets Due to Customer Choice/Specifications and Preferences....................26 6.0 Niche Markets Due to Unique Products or Species .....................................................33 6.1 Unique Products..................................................................................................33 6.2 Unique Species....................................................................................................42 7.0 Niche Markets Resulting From Regulatory Policies
    [Show full text]
  • WOOD IDENTIFICATION -A REVIEW' Elisabeth A. Wheeler2 & Pieter Baas3
    IAWA Journal, Val. 19 (3), 1998: 241-264 WOOD IDENTIFICATION -A REVIEW' by Elisabeth A. Wheeler2 & Pieter Baas 3 SUMMARY Wood identification is of value in a variety of contexts - commercial, forensic, archaeological and paleontological. This paper reviews the basics of wood identification, including the problems associated with different types of materials, lists commonly used microscopic and mac­ roscopic features and recent wood anatomical atlases, discusses types ofkeys (synoptic, dichotomous, and multiple entry), and outlines some work on computer-assisted wood identification, Key words: Wood identification, keys, computer-aided wood identifi­ cation, INTRODUCTION In the last decade, computerized keys have made the identification of uncommon woods easier, Nevertheless, 'traditional' methods remain important because often they are more efficient and convenient, particularly for common commercial woods, This paper discusses some applications of wood identification, logistics, the macroscopic and microscopic features used for wood identification (particularly for hardwoods, i.e" dicotyledonous angiosperms), identification procedures, some recent computer­ aided wood identification projects, and the need for additional work. APPLICATIONS Proper processing of wood, especially drying, depends upon correct species identifi­ cation because different species and species groups require different protocols. When problems arise during wood processing (drying, machining, or finishing), one of the first questions asked is whether the wood was correctly identified. Customs officials need to know whether logs, timbers, or wood products are cor­ rectly labeled so that tariffs can be properly assessed and trade regulations enforced. The International Timber Trade Organization (ITTO) has proposed limiting interna­ tional trade to timber that is cut from sustainably managed concessions. Verifying the source and identity of timber in order to enforce bans on trade in woods of endan­ gered species will require wood identification skills (Baas 1994).
    [Show full text]
  • Energy Analysis and Diagnostics in Wood Manufacturing Industry
    Graduate Theses, Dissertations, and Problem Reports 2002 Energy analysis and diagnostics in wood manufacturing industry Amol Anant Mate West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Mate, Amol Anant, "Energy analysis and diagnostics in wood manufacturing industry" (2002). Graduate Theses, Dissertations, and Problem Reports. 1270. https://researchrepository.wvu.edu/etd/1270 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Energy Analysis and Diagnostics in Wood Manufacturing Industry Amol Mate Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Industrial Engineering B.Gopalakrishnan, Ph.D., Chair Ralph Plummer, Ph.D. Bruce Anderson, Ph.D. Department of Industrial and Management Systems Engineering Morgantown, West Virginia 2002 Keywords: Energy Assessment, Wood Manufacturing Industry, Sensitivity Analysis, Motor Downsizing, Demand Reduction, Motor Master + Abstract Energy Analysis and Diagnostics in Wood Manufacturing Industry Amol Mate Energy conservation is the need of the hour.
    [Show full text]
  • IAWA List of Microscopic Features for Softwood Identification 1
    IAWA List of microscopic features for softwood identification 1 IAWA LIST OF MICROSCOPIC FEATURES FOR SOFTWOOD IDENTIFICATION IAWA Committee Pieter Baas – Leiden, The Netherlands Nadezhda Blokhina – Vladivostok, Russia Tomoyuki Fujii – Ibaraki, Japan Peter Gasson – Kew, UK Dietger Grosser – Munich, Germany Immo Heinz – Munich, Germany Jugo Ilic – South Clayton, Australia Jiang Xiaomei – Beijing, China Regis Miller – Madison, WI, USA Lee Ann Newsom – University Park, PA, USA Shuichi Noshiro – Ibaraki, Japan Hans Georg Richter – Hamburg, Germany Mitsuo Suzuki – Sendai, Japan Teresa Terrazas – Montecillo, Mexico Elisabeth Wheeler – Raleigh, NC, USA Alex Wiedenhoeft – Madison, WI, USA Edited by H.G. Richter, D. Grosser, I. Heinz & P.E. Gasson © 2004. IAWA Journal 25 (1): 1–70 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland, Leiden, The Netherlands 2 IAWA Journal, Vol. 25 (1), 2004 IAWA List of microscopic features for softwood identification 3 2 IAWA Journal, Vol. 25 (1), 2004 IAWA List of microscopic features for softwood identification 3 PREFACE A definitive list of anatomical features of softwoods has long been needed. The hard- wood list (IAWA Committee 1989) has been adopted throughout the world, not least because it provides a succinct, unambiguous illustrated glossary of hardwood charac- ters that can be used for a variety of purposes, not just identification. This publication is intended to do the same job for softwoods. Identifying softwoods relies on careful observation of a number of subtle characters, and great care has been taken to show high quality photomicrographs that remove most of the ambiguity that definitions alone would provide. Unlike the Hardwood Committee, the Softwood Committee never met in its full com- position.
    [Show full text]
  • 2020 State of the Industry
    TABLE OF CONTENTS SECRETARY OF AGRICULTURE INTRODUCTION ........................................................... 3 HARDWOODS DEVELOPMENT COUNCIL ......................................................................... 4 PENNSYLVANIA’S HARDWOOD INDUSTRY ...................................................................... 6 PENNSYLVANIA’S FOREST RESOURCE ............................................................................. 13 GOVERNOR’S GREEN RIBBON TASK FORCE .................................................................. 17 DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES .......................... 19 DOMESTIC MARKETING ....................................................................................................... 21 INTERNATIONAL MARKETING ............................................................................................ 22 PENNSYLVANIA WOODMOBILE ......................................................................................... 24 WOOD IS GREEN ..................................................................................................................... 26 FOREST PESTS – INVASIVE SPECIES .................................................................................. 27 PENNSYLVANIA HARDWOOD UTILIZATION GROUPS ................................................ 29 Allegheny Hardwood Utilization Group .................................................................................... 30 Keystone Wood Products Association ......................................................................................
    [Show full text]
  • Industry Structure and Market Potential for Value-Added Wood Products in Northwest Louisiana
    July 2000 Bulletin Number 872 Industry Structure and Market Potential for Value-added Wood Products in Northwest Louisiana Richard P. Vlosky and N. Paul Chance This research was made possible by grants from the U.S. Department of Commerce, Economic Development Administration, The Coordinating & Development Corporation in Shreveport, Louisiana, and the Louisiana Agricultural Experiment Station. Louisiana State University Agricultural Center William B. Richardson, Chancellor Louisiana Agricultural Experiment Station R. Larry Rogers, Vice Chancellor and Director The Louisiana Agricultural Experiment Station provides equal opportunities in programs and employment. 2 Industry Structure and Market Potential for Value-added Wood Products in Northwest Louisiana Richard P. Vlosky and N. Paul Chance1 1The authors are Associate Professor, Louisiana Forest Products Laboratory, School of Forestry, Wildlife, and Fisheries, Louisiana State University Agricultural Center, Baton Rouge, Louisiana; and President, Pro-Development Services, LLC., respectively. 3 Table of Contents Introduction ........................................................................................ 5 The Problem ........................................................................................ 6 Classifying Solid Wood Products ........................................................ 8 Overview ........................................................................................ 8 Objectives .......................................................................................
    [Show full text]