RESEARCH ARTICLE 653 Differential regulation of CENP-A and histone H3 phosphorylation in G2/M Samantha G. Zeitlin1,*, Cynthia M. Barber2,*, C. David Allis2and Kevin E. Sullivan1,‡ 1Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA 2Departments of Biochemistry and Molecular Genetics and Microbiology, University of Virginia, Charlottesville, VA, USA *These authors contributed equally to this work ‡Author for correspondence (e-mail:
[email protected]) Accepted 28 November 2000 Journal of Cell Science 114, 653-661 © The Company of Biologists Ltd SUMMARY After DNA replication, cells condense their chromosomes both pericentric initiation and genome-wide stages in order to segregate them during mitosis. The of histone H3 phosphorylation. Quantitative condensation process as well as subsequent segregation immunocytochemistry reveals that CENP-A requires phosphorylation of histone H3 at serine 10. phosphorylation begins in prophase and reaches maximal Histone H3 phosphorylation initiates during G2 in levels in prometaphase. CENP-A phosphoepitope reactivity pericentric foci prior to H3 phosphorylation in the is lost during anaphase and becomes undetectable in chromosome arms. Centromere protein A (CENP-A), a telophase cells. Duplication of prekinetochores, detected as histone H3-like protein found uniquely at centromeres, the doubling of CENP-A foci, occurs prior to complete contains a sequence motif similar to that around H3 Ser10, histone H3 phosphorylation in G2. Mitotic phosphorylation suggesting that CENP-A phosphorylation might be linked of histone H3-family proteins shows tight spatial and to pericentric initiation of histone H3 phosphorylation. To temporal control, occurring in three phases: (1) pericentric test this hypothesis, we generated peptide antibodies H3 phosphorylation, (2) chromosome arm H3 against the putative phosphorylation site of CENP-A.