1 Enhancer regions show high histone H3.3 turnover that changes during 2 differentiation 3 4 5 Aimee M. Deaton1,2, Mariluz Gómez-Rodrı́guez3, Jakub Mieczkowski1, Michael Y. 6 Tolstorukov1, Sharmistha Kundu1, Ruslan Sadreyev1,4, Lars E.T. Jansen3*, Robert E. 7 Kingston1*. 8 9 1 Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics 10 Harvard Medical School, Boston, MA 02114. 11 2 Present address: Amgen Inc, 360 Binney St, Cambridge, MA 02142. 12 3 Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal. 13 4 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA. 14 15 * For correspondence:
[email protected] (LETJ),
[email protected] (REK) 16 17 18 Abstract 19 20 The organization of DNA into chromatin is dynamic; nucleosomes are frequently 21 displaced to facilitate the ability of regulatory proteins to access specific DNA 22 elements. To gain insight into nucleosome dynamics, and to follow how dynamics 23 change during differentiation, we used a technique called time-ChIP to 24 quantitatively assess histone H3.3 turnover genome-wide during differentiation of 25 mouse ESCs. We found that, without prior assumptions, high turnover could be used 26 to identify regions involved in gene regulation. High turnover was seen at 27 enhancers, as observed previously, with particularly high turnover at super- 28 enhancers. In contrast, regions associated with the repressive Polycomb-Group 29 showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon 30 differentiation, numerous changes in H3.3 turnover rates were observed, the 31 majority of which occurred at enhancers.