Histone Variant H3.3 Is an Essential Maternal Factor for Oocyte Reprogramming

Total Page:16

File Type:pdf, Size:1020Kb

Histone Variant H3.3 Is an Essential Maternal Factor for Oocyte Reprogramming Histone variant H3.3 is an essential maternal factor for oocyte reprogramming Duancheng Wena,b,c,1, Laura A. Banaszynskid,1, Ying Liua,b, Fuqiang Genga,b, Kyung-Min Nohd, Jenny Xiange, Olivier Elementof, Zev Rosenwaksc, C. David Allisd,2, and Shahin Rafiia,b,2 aDepartment of Genetic Medicine, Ansary Stem Cell Institute, bHoward Hughes Medical Institute, cRonald O. Perelman and Claudia Cohen Center for Reproductive Medicine, eGenomics Resources Core Facility, and fDepartment of Physiology, Weill Cornell Medical College, New York, NY 10065; and dLaboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065 Contributed by C. David Allis, April 11, 2014 (sent for review January 30, 2014) Mature oocyte cytoplasm can reprogram somatic cell nuclei to the importance of H3.3 in oocyte fertilization, we sought to determine pluripotent state through a series of sequential events including whether the H3.3 variant might also be a maternal “reprogramming protein exchange between the donor nucleus and ooplasm, factor” and whether it might play a specialized role during somatic chromatin remodeling, and pluripotency gene reactivation. Ma- cell reprogramming. ternal factors that are responsible for this reprogramming process Here, we show that maternal H3.3 is critical for the development remain largely unidentified. Here, we demonstrate that knock- of SCNT embryos and for the reactivation of many key pluri- down of histone variant H3.3 in mouse oocytes results in potency genes. We demonstrate maternal H3.3 remodeling of donor compromised reprogramming and down-regulation of key pluri- nuclear chromatin through replacement of donor nucleus-derived potency genes; and this compromised reprogramming for de- H3 with de novo synthesized H3.3 protein, with overall replacement velopmental potentials and transcription of pluripotency genes levels dependent on the identity of the donor nucleus. can be rescued by injecting exogenous H3.3 mRNA, but not H3.2 mRNA, into oocytes in somatic cell nuclear transfer embryos. We Results show that maternal H3.3, and not H3.3 in the donor nucleus, is Quantitative RT-PCR (RT-qPCR) demonstrated that the cyto- essential for successful reprogramming of somatic cell nucleus into plasm of mouse MII oocytes is abundant with h3f3a and h3f3b the pluripotent state. Furthermore, H3.3 is involved in this transcripts (H3.3A and H3.3B; Fig. 1A). These maternal tran- reprogramming process by remodeling the donor nuclear chroma- scripts become largely depleted by the first embryonic cleavage tin through replacement of donor nucleus-derived H3 with de (20 h after oocyte activation), whereas zygotic H3.3 is elevated novo synthesized maternal H3.3 protein. Our study shows that after the two-cell stage (Fig. 1B). We microinjected siRNAs H3.3 is a crucial maternal factor for oocyte reprogramming and against H3.3A and H3.3B (siH3.3; 10 μM) into MII oocytes by provides a practical model to directly dissect the oocyte for its using a fine capillary (3–5 μm in diameter), and found that ma- reprogramming capacity. ternal H3.3 mRNAs were significantly decreased and zygotic H3.3 was also suppressed up to 44 h after oocyte activation (Fig. BIOLOGY ioneering nuclear transfer experiments in amphibians have 1 C and D). RT-qPCR analysis of H3.3A, H3.3B, H3.1, and H3.2 DEVELOPMENTAL Prevealed that the cytoplasm of the egg is able to reprogram in the oocytes after siH3.3 injection demonstrated the specificity a differentiated nucleus to the embryonic state (1, 2). The suc- of H3.3 knockdown vs. the canonical histones (Fig. 1C). We next cess of somatic cell nuclear transfer (SCNT) to produce cloned tested a serial dilution of siH3.3 concentrations for knockdown animals using enucleated metaphase II (MII) oocytes (3, 4), and, efficiency (the oocyte poses an upper limit to the injected volume recently, the successful derivation of SCNT human embryonic that does not induce lysis; thus, the amount of siRNA that can be stem cells (5), have demonstrated that maternal factors in the mature ooplasm are capable and sufficient to reprogram a dif- Significance ferentiated cell nucleus to pluripotency. This process is known to involve a series of sequential events including protein exchange A differentiated cell nucleus can be reprogrammed into the between donor nucleus and ooplasm, donor nuclear chromatin pluripotent state by maternal factors in ooplasm; the factors remodeling, and pluripotency gene reactivation (6–12). How- that are responsible for this reprogramming process have not ever, maternal factors responsible for this reprogramming pro- yet been identified. In this paper, we show that histone variant cess and the underlying mechanism(s) remain largely unknown. H3.3 is one of the essential maternal factors involved in so- Thousands of different maternal proteins and mRNAs have matic nuclear reprogramming. Maternal H3.3, not H3.3 in the been found in mouse mature oocytes (13, 14), including variants donor chromatin, is required for development and the reac- of the core histone proteins that, along with DNA, constitute tivation of many key pluripotency genes in somatic cell nuclear nucleosomes. Accumulating evidence suggests that histone var- transfer (SCNT) embryos. H3.3 facilitates reprogramming by iants play important roles in chromatin remodeling and epige- remodeling the donor nuclear chromatin through replacement netic regulation orchestrating gene expression changes during of donor H3 in chromatin with de novo synthesized maternal reprogramming (12, 15, 16). In mammals, the histone variant H3.3 at the beginning of reprogramming in SCNT embryos. H3.3 is encoded by two different genes (h3f3a and h3f3b), whose translation results in an identical protein product (17, 18). Un- Author contributions: D.W., L.A.B., Z.R., C.D.A., and S.R. designed research; D.W., L.A.B., like canonical H3 histones that are expressed and incorporated F.G., and K.-M.N. performed research; D.W. and L.A.B. contributed new reagents/analytic into chromatin during S phase, expression of H3.3 is not cell tools; D.W., L.A.B., Y.L., J.X., and O.E. analyzed data; and D.W. and L.A.B. wrote the paper. cycle-regulated, and the variant is expressed in quiescent cells, The authors declare no conflict of interest. postmitotic cells, and proliferating cells throughout the whole Data deposition: The data reported in this paper have been deposited in the Gene Ex- cycle, enabling H3.3 deposition in a DNA synthesis-independent pression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE56762). manner during and outside of S phase (19). It has been suggested 1D.W. and L.A.B. contributed equally to this work. that maternal H3.3 plays an important role in male pronucleus 2To whom correspondence may be addressed. E-mail: [email protected] or srafii@ formation and male genome epigenetic reprogramming; indeed, med.cornell.edu. maternal H3.3 is incorporated in the decondensing sperm nu- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. cleus as early as 1 h after fertilization (20–23). Considering the 1073/pnas.1406389111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1406389111 PNAS | May 20, 2014 | vol. 111 | no. 20 | 7325–7330 Downloaded by guest on September 23, 2021 Knockdown of maternal H3.3 in oocytes resulted in signifi- A 2.5 B 1.4 MII oocytes H3.3A cantly compromised embryonic development of parthenogenet- Enucleated oocytes 1.2 2.0 H3.3B 1.0 ically activated (PA) embryos, with arrest at the late morula or 1.5 0.8 early blastocyst stage; uninjected oocytes and oocytes subjected 0.6 to microinjection of an siRNA against luciferase served as con- 1.0 E A 0.4 trols (Fig. 1 , Fig. S2 , and Table S1). We next tested different 0.5 0.2 siH3.3 concentrations on the developmental potential of PA Relative levels to μ 0 unactivated oocytes 0 embryos, and found that injection of four siH3.3 at 4 M each mRNA relative to Gapdh H3.3A H3.3B 0 6 9 12 15 18 21 24 27 31 72 96 was the lowest concentration that significantly decreased blas- Hours after activation tocyst potential (Fig. S2B), whereas injection of 16 μM luciferase C 2.0 H3.3A D 1.2 siRNA did not significantly decrease the developmental potential of H3.3B H3.3A PA embryos (Fig. S2B). A similar phenotype in fertilized embryos 1.6 H3.1 1.0 H3.2 H3.3B was observed after maternal H3.3 knockdown in zygotes (25). 0.8 1.2 To examine whether exogenous H3 mRNAs (that are not the 0.6 0.8 target of siH3.3) could rescue compromised development, we 0.4 injected epitope-tagged H3.3-HA mRNA or H3.2-HA mRNA 0.4 0.2 A C D Relative levels to Relative levels to into oocytes after H3.3KD (Fig. 2 and Fig. S2 and ). We unactivated oocytes 0 unactivated oocytes 0 found that the number of blastocyst stage embryos was signifi- Ctl 4 µM 10 µM 0 6 9 15 21 24 27 44 72 96 H3.3KD Hours after activation cantly increased by injection of exogenous H3.3-HA mRNA, but 24h after activation not H3.2-HA mRNA (Fig. 1E, Fig. S2A, and Table S1), in- E dicating that this phenotype is the result of maternal H3.3 de- 100 pletion, not the reduction of total maternal histone H3 levels in H3.3KD embryos. 80 As the two H3.3 transcripts contain unique untranslated regions 60 containing distinct regulatory elements, we next tested whether 40 * * H3.3A and H3.3B are functionally equivalent during early em- 20 bryonic development. We found no difference in embryonic de- velopmental potential when only H3.3A or H3.3B was knocked 0 E A Ctl Luc KD KD AA BA H3.3 H3.2 down in oocytes (Fig.
Recommended publications
  • Tricarboxylic Acid Cycle Metabolites As Mediators of DNA Methylation Reprogramming in Bovine Preimplantation Embryos
    Supplementary Materials Tricarboxylic Acid Cycle Metabolites as Mediators of DNA Methylation Reprogramming in Bovine Preimplantation Embryos Figure S1. (A) Total number of cells in fast (FBL) and slow (SBL) blastocysts; (B) Fluorescence intensity for 5-methylcytosine and 5-hydroxymethylcytosine of fast and slow blastocysts of cells from Trophoectoderm (TE) or inner cell mass (ICM). Fluorescence intensity for 5-methylcytosine of cells from the ICM or TE in blastocysts cultured with (C) dimethyl-succinate or (D) dimethyl-α- ketoglutarate. Statistical significance is identified by different letters. Figure S2. Experimental design. Table S1. Selected genes related to metabolism and epigenetic mechanisms from RNA-Seq analysis of bovine blastocysts (slow vs. fast). Genes in blue represent upregulation in slow blastocysts, genes in red represent upregulation in fast blastocysts. log2FoldCh Gene p-value p-Adj ange PDHB −1.425 0.000 0.000 MDH1 −1.206 0.000 0.000 APEX1 −1.193 0.000 0.000 OGDHL −3.417 0.000 0.002 PGK1 −0.942 0.000 0.002 GLS2 1.493 0.000 0.002 AICDA 1.171 0.001 0.005 ACO2 0.693 0.002 0.011 CS −0.660 0.002 0.011 SLC25A1 1.181 0.007 0.032 IDH3A −0.728 0.008 0.035 GSS 1.039 0.013 0.053 TET3 0.662 0.026 0.093 GLUD1 −0.450 0.032 0.108 SDHD −0.619 0.049 0.143 FH −0.547 0.054 0.149 OGDH 0.316 0.133 0.287 ACO1 −0.364 0.141 0.297 SDHC −0.335 0.149 0.311 LIG3 0.338 0.165 0.334 SUCLG −0.332 0.174 0.349 SDHA 0.297 0.210 0.396 SUCLA2 −0.324 0.248 0.439 DNMT1 0.266 0.279 0.486 IDH3B1 −0.269 0.296 0.503 SDHB −0.213 0.339 0.544 DNMT3B 0.181 0.386 0.598 APOBEC1 0.629 0.386 0.598 TDG 0.427 0.398 0.611 IDH3G 0.237 0.468 0.675 NEIL2 0.509 0.572 0.720 IDH2 0.298 0.571 0.720 DNMT3L 1.306 0.590 0.722 GLS 0.120 0.706 0.821 XRCC1 0.108 0.793 0.887 TET1 −0.028 0.879 0.919 DNMT3A 0.029 0.893 0.920 MBD4 −0.056 0.885 0.920 PDHX 0.033 0.890 0.920 SMUG1 0.053 0.936 0.954 TET2 −0.002 0.991 0.991 Table S2.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]
  • Cross-Talk Between Histone H3 Tails Produces Cooperative Nucleosome Acetylation
    Cross-talk between histone H3 tails produces cooperative nucleosome acetylation Shanshan Li and Michael A. Shogren-Knaak1 Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 Edited by Jerry L. Workman, Stowers Institute for Medical Research, Kansas City, MO, and accepted by the Editorial Board September 23, 2008 (received for review May 9, 2008) Acetylation of histone proteins by the yeast Spt-Ada-Gcn5-acetyl- nucleosomes, with an average distance between nucleosome cen- tansferase (SAGA) complex has served as a paradigm for under- ters of 212 bp (12). Although these nucleosomes are arrayed in a standing how posttranslational modifications of chromatin regu- linear fashion in genomic sequence, in many cases they adopt more late eukaryotic gene expression. Nonetheless, it has been unclear complex higher-order structures. Short-range interactions between to what extent the structural complexity of the chromatin sub- nucleosomes within a strand of chromatin allow chromatin to adopt strate modulates SAGA activity. By using chromatin model sys- a more compact 30-nm fiber structure (13, 14), and long-range tems, we have found that SAGA-mediated histone acetylation is interactions between distant nucleosomes provide a means for .(highly cooperative (cooperativity constant of 1.97 ؎ 0.15), employ- chromatin to potentially adopt 100- to 400-nm fiber structures (15 ing the binding of multiple noncontiguous nucleosomes to facili- Moreover, a number of recent studies suggest that different func- tate maximal acetylation activity. Studies with various chromatin tional forms of chromatin can adopt complex looping structures, substrates, including those containing novel asymmetric histone where regions of the genome that are separated by large distances octamers, indicate that this cooperativity occurs only when both in sequence can be brought together in space (16).
    [Show full text]
  • Histones H3 and H4 Are Components of Upstream Activation Factor Required for the High-Level Transcription of Yeast Rdna by RNA Polymerase I
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 13458–13462, December 1997 Biochemistry Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I JOHN KEENER*, JONATHAN A. DODD*, DOMINIQUE LALO, AND MASAYASU NOMURA† Department of Biological Chemistry, University of California, Irvine, CA 92697-1700 Contributed by Masayasu Nomura, October 16, 1997 ABSTRACT RNA polymerase I (Pol I) transcription in consisting of Rrn6p, Rrn7p, and Rrn11p; refs. 3, 9, and 10), the yeast Saccharomyces cerevisiae is greatly stimulated in vivo Rrn3p (5), and Pol I are required. In addition to these factors, and in vitro by the multiprotein complex, upstream activation upstream activation factor (UAF) and TATA box-binding factor (UAF). UAF binds tightly to the upstream element of the protein, as well as the upstream element, are required for a rDNA promoter, such that once bound (in vitro), UAF does not high level of transcription from the yeast rDNA promoter (4, readily exchange onto a competing template. Of the polypep- 11). Purified UAF previously was shown to contain three tides previously identified in purified UAF, three are encoded genetically defined subunits, Rrn5p, Rrn9p, and Rrn10p, and by genes required for Pol I transcription in vivo: RRN5, RRN9, two uncharacterized subunits, p30 and p18 (4). and RRN10. Two others, p30 and p18, have remained unchar- DNA in the eukaryotic nucleus is organized as chromatin, acterized. We report here that the N-terminal amino acid consisting mostly of regularly repeating nucleosomes in which sequence, its mobility in gel electrophoresis, and the immu- DNA is wrapped around an octameric structure of core noreactivity of p18 shows that it is histone H3.
    [Show full text]
  • Structure–Function Studies of Histone H3/H4 Tetramer Maintenance During Transcription by Chaperone Spt2
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2 Shoudeng Chen,1,5 Anne Rufiange,2,5 Hongda Huang,1 Kanagalaghatta R. Rajashankar,3,4 Amine Nourani,2 and Dinshaw J. Patel1 1Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 2Groupe St-Patrick de Recherche en Oncologie Fondamentale, L’Hôtel-Dieu de Québec (Université Laval), Québec G1R 2J6, Canada; 3Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois 60439, USA; 4Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/ H4 exchange as measured by H3K56ac and new H3 deposition.
    [Show full text]
  • The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly
    Molecular Cell, Vol. 9, 1191–1200, June, 2002, Copyright 2002 by Cell Press The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly Kami Ahmad and Steven Henikoff1 ment are not clear. A study in Tetrahymena concluded Fred Hutchinson Cancer Research Center that no protein difference between histone H3 variants 1100 Fairview Avenue North was required for replacement histone deposition and Seattle, Washington 98109 that expression of either variant outside of S phase ap- peared to be sufficient (Yu and Gorovsky, 1997). In con- trast, by examining the dynamics of histone proteins in Summary Drosophila nuclei we show that the major histone H3 and the replacement histone H3.3 proteins have distinct Two very similar H3 histones—differing at only four properties during in vivo chromatin assembly. Histone amino acid positions—are produced in Drosophila H3.3 participates in replication-independent (RI) nucleo- cells. Here we describe a mechanism of chromatin some assembly and is targeted to transcriptionally ac- regulation whereby the variant H3.3 is deposited at tive loci throughout the cell cycle. Transcription-coupled particular loci, including active rDNA arrays. While the deposition of H3.3-containing nucleosomes may be a major H3 is incorporated strictly during DNA replica- general mechanism for rapidly replacing permanently tion, amino acid changes toward H3.3 allow replica- modified nucleosomes and for heritably activating tion-independent (RI) deposition. In contrast to repli- genes. cation-coupled (RC) deposition, RI deposition does not require the N-terminal tail. H3.3 is the exclusive Results substrate for RI deposition, and its counterpart is the only substrate retained in yeast.
    [Show full text]
  • Histone H3.3 and Its Proteolytically Processed Form Drive a Cellular Senescence Programme
    ARTICLE Received 21 Mar 2014 | Accepted 9 Sep 2014 | Published 14 Nov 2014 DOI: 10.1038/ncomms6210 Histone H3.3 and its proteolytically processed form drive a cellular senescence programme Luis F. Duarte1,2,3, Andrew R.J. Young4, Zichen Wang3,5, Hsan-Au Wu1,3, Taniya Panda1,2, Yan Kou3,5, Avnish Kapoor1,2,w, Dan Hasson1,2, Nicholas R. Mills1,2, Avi Ma’ayan5, Masashi Narita4 & Emily Bernstein1,2 The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Here, using models of oncogene-induced and replicative senescence, we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first 21 amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. 1 Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. 2 Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L.
    [Show full text]
  • Abo1 Is Required for the H3k9me2 to H3k9me3 Transition in Heterochromatin Wenbo Dong1, Eriko Oya1, Yasaman Zahedi1, Punit Prasad 1,2, J
    www.nature.com/scientificreports OPEN Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin Wenbo Dong1, Eriko Oya1, Yasaman Zahedi1, Punit Prasad 1,2, J. Peter Svensson 1, Andreas Lennartsson1, Karl Ekwall1 & Mickaël Durand-Dubief 1* Heterochromatin regulation is critical for genomic stability. Diferent H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fssion yeast. We identifed several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin. In eukaryotic cells, the regions of the chromatin that contain active genes are termed euchromatin, and these regions condense in mitosis to allow for chromosome segregation and decondense in interphase to allow for gene transcription1. Te chromatin regions that remain condensed throughout the cell cycle are defned as het- erochromatin regions and are transcriptionally repressed2,3.
    [Show full text]
  • Posttranslational Modification of CENP-A Influences The
    Posttranslational modification of CENP-A influences the conformation of centromeric chromatin Aaron O. Baileya,1, Tanya Panchenkob,1, Kizhakke M. Sathyanc, Janusz J. Petkowskid, Pei-Jing Paie, Dina L. Baif, David H. Russelle, Ian G. Macarad, Jeffrey Shabanowitzf, Donald F. Huntf,g, Ben E. Blackb,2, and Daniel R. Foltza,c,2 Departments of aCell Biology, cBiochemistry and Molecular Genetics, dMicrobiology, fChemistry, and gPathology, University of Virginia, Charlottesville, VA 22908; bDepartment of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059; and eDepartment of Chemistry, Texas A&M University, College Station, TX 77842-3012 Edited* by C. David Allis, The Rockefeller University, New York, NY, and approved June 13, 2013 (received for review January 7, 2013) Centromeres are chromosomal loci required for accurate segrega- of these proteins are highly divergent, sharing only 24% identity. tion of sister chromatids during mitosis. The location of the cen- Several lysine residues in the canonical H3 N terminus are highly tromere on the chromosome is not dependent on DNA sequence, conserved targets of acetylation and methylation that mediate but rather it is epigenetically specified by the histone H3 variant epigenetic regulation of local chromatin activity (12, 13). Post- centromere protein A (CENP-A). The N-terminal tail of CENP-A is translational modification (PTM) of histones is usually combi- highly divergent from other H3 variants. Canonical histone N natorial, and the net PTM status of these histones can negatively fl termini are hotspots of conserved posttranslational modification; or positively in uence transcription or direct global condensa- however, no broadly conserved modifications of the vertebrate tion of chromatin.
    [Show full text]
  • Identification of Key Genes Related to the Mechanism and Prognosis of Lung Squamous Cell Carcinoma Using Bioinformatics Analysis
    Identification of key genes related to the mechanism and prognosis of lung squamous cell carcinoma using bioinformatics analysis Miaomiao Gaoa,#, Weikaixin Kongb,#, Zhuo Huangb,* and Zhengwei Xiea,* #These authors contributed equally to this work aDepartment of Pharmacology and Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Lu, Haidian district, Beijing 100191, China bDepartment of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu, Haidian district, Beijing 100191, China * To whom correspondence should be addressed. ZhengweiXie Tel: 86-10-82802798; Fax: 86-10-82802798; Email: [email protected]. Zhuo Huang E-mail: [email protected] Abstract Objectives Lung squamous cell carcinoma (LUSC) often diagnosed as advanced with poor prognosis. The mechanisms of its pathogenesis and prognosis require urgent elucidation. This study was performed to screen potential biomarkers related to the occurrence, development and prognosis of LUSC to reveal unknown physiological and pathological processes. Materials and Methods Using bioinformatics analysis, the lung squamous cell carcinoma microarray datasets from the GEO and TCGA databases were analyzed to identify differentially expressed genes (DEGs). Furthermore, PPI and WGCNA network analysis were integrated to identify the key genes closely related to the process of LUSC development. In addition, survival analysis was performed to achieve a prognostic model that accomplished a high level of prediction accuracy. Results and Conclusion Eighty-five up-regulated and 39 down-regulated genes were identified, on which functional and pathway enrichment analysis was conducted. GO analysis demonstrated that up-regulated genes were principally enriched in epidermal development and DNA unwinding in DNA replication.
    [Show full text]
  • Phosphorylation of Histone H3: a Balancing Act Between Chromosome Condensation and Transcriptional Activation
    Review TRENDS in Genetics Vol.20 No.4 April 2004 Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation Scott J. Nowak1,2 and Victor G. Corces1 1Department of Biology, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA 2Present address: Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, NY 10016, USA In recent years, the covalent modification of histone sufficiently malleable and modifiable to enable access to tails has emerged as a crucial step in controlling the genetic information. Such a structure is the composite transcription of eukaryotic genes. Phosphorylation of material termed chromatin, which contains the entire the serine 10 residue of the N-terminal tail of histone H3 genome and associated proteins [1]. Because DNA is is crucial for chromosome condensation and cell-cycle compacted into a highly condensed and ordered structure, progression during mitosis and meiosis. In addition, considerable interest has focused on how the transcrip- this modification is important during interphase tional machinery gains access to the genes contained because it enables the transcription of an increasing within chromatin and expresses them in an organized number of genes that are activated as a consequence of program, as is required in the processes of cellular a variety of cell-signaling events. The location of the differentiation and development. The alteration of chro- serine 10 residue in close proximity to other modifiable matin organization, via covalent modification and/or amino acids in the histone H3 tail enables the possibility remodeling of this structure, is thought to provide access of an interaction between phosphorylation of serine 10 to the genes for the transcription apparatus.
    [Show full text]