Population and Family Based Studies of Consanguinity: Genetic And

Total Page:16

File Type:pdf, Size:1020Kb

Population and Family Based Studies of Consanguinity: Genetic And Population and family based studies of consanguinity: Genetic and computational approaches Abdullah Mesut Erzurumluoğlu A dissertation submitted to the University of Bristol in accordance with the requirements for award of degree of Doctor of Philosophy (PhD) in the Faculty of Medicine and Dentistry October 2015 Word Count = ~65,000* *Excluding preface, tables, footnotes, references and appendices Thesis Abstract Consanguinity is the union of closely related individuals – which can have genetic implications on the health of offspring(s). Consanguineous families with disorders have been extensively analysed by geneticists and this has led to the identification of many autosomal recessive disorder causal variants and genes. Two copies of the ‘inactivating’ or loss of function (LoF) allele are required to cause an autosomal recessive disorder, one inherited from the mother and the other from the father. In outbreeding populations these LoF alleles very rarely meet their counterpart (as it requires both parents to possess the allele), thus are passed down the generations silently – sometimes for millennia. However, consanguineous and/or endogamous offspring have elevated levels of homozygosity, which dramatically increases the probability of any allele to be in a homozygous (or more correctly autozygous) state. This increase in probability applies to LoF mutations also; and this elevation of levels of homozygosity is the main reason why extremely rare autosomal recessive disorders are usually only seen in populations where consanguinity (and/or endogamy) levels are high. With the ever decreasing prices of DNA sequencing, whole-genome sequencing is becoming a reality for many laboratories. However, for now, whole-exome sequencing (WES) is the most feasible sequencing technique mostly due to cost factors. Combining the concepts of consanguinity and WES, the aim of this thesis was to identify ‘causal’ variants by analysing whole-exome data obtained from consanguineous families/individuals affected from autosomal recessive disorders such as Primary Ciliary Dyskinesia (PCD) and Autosomal Recessive Intellectual Disability (ARID). Using autozygosity mapping, a novel region located on chromosome 19 (p13.3) was identified to be associated with ARID (later sequenced by another research group and ADAT3 was identified as the causal gene). Using WES, rare homozygous nonsense mutations p.E309* in CCDC151 and p.R136* in DNAAF3 were found to be causal of PCD. Other variants such as p.M263T in MNS1, p.R263* in DNALI1, p.G734fs in HEATR2 and p.E328* in LRRC48 have also been identified which may be causal of PCD but studies in this thesis remained inconclusive due to various reasons. Additionally, a rare missense mutation p.G300D in CTSC was found to be Papillon-Lèfevre syndrome (PLS) causal. This latter finding illustrated the additional information that can be gained from WES data – which is discussed in the thesis. Finding novel causal variants and gene functions can improve genetic counselling and lead to the identification of targets for preventive and/or curative medicine. In this respect, analysing consanguineous populations as a whole rather than ‘cherry picking’ families with disorders will have additional benefits and facilitate our understanding of the human genome – and this subject is also discussed in this thesis. i Author’s declaration I declare that the work in this dissertation was carried out in accordance with the requirements of the University’s Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in text, the work is the candidate’s own work. Work done in collaboration with, or with the assistance of others, is indicated as such. Any views expressed in the dissertation are those of the author. SIGNED: ....................................................... DATE: 01/10/2015 ii Acknowledgements I would like to begin by thanking every single one of my colleagues at the Bristol Genetic Epidemiology Laboratories (BGEL) for their academic, social and emotional help over the four years I have been there. Special mentions should go to my supervisors Dr. Santiago Rodriguez, Dr. Tom R. Gaunt and Prof. Ian Day, my desk mates (and colleagues) Dr. Hashem A. Shihab, Denis A. Baird, Tom G. Richardson, Dr. Jie Zheng and Dr. Chris Boustred, and colleagues Dr. John Kemp, Dr. Philip Guthrie and Dr. Osama Al-Ghamdi for their extra effort and time on transforming the academically ‘naïve and inexperienced’ Mesut that joined the BGEL in January 2012 to Dr. Erzurumluoğlu today. I am indebted to my parents Ayla and (Dr.) Bayram Erzurumluoğlu, and siblings (Esat, Hasna and Nuran) for the sacrifices they have made; my friends and housemates for putting up with me; and most of all, God Almighty (The Most Gracious, The Most Merciful) for giving me the ability, strength and will power to overcome obstacles and get through hard times in academic, economic and social life. Finally, I am grateful to the Medical Research Council (MRC) for the scholarship they have provided as it enabled me to concentrate solely on my research and therefore directly contributed to the findings published in this thesis. iii “Kulları içinde ancak âlimler, Allah’ı gerektiği tarzda tazim ederler.” Kuran-ı Kerîm, Fâtir, 28 “Among His servants/creation, only the scholars (those who have knowledge) truly fear and honour God.” Holy Qur’an, Fatir, 28 iv Table of Contents Chapter 1. Introduction and Literature Review ................................................................. 1 1.1. Organism to Genome to Genes .............................................................................. 1 1.1.1. What is a gene? .................................................................................................. 4 1.1.2. Variation in a genome ...................................................................................... 8 1.2. Epidemiology and Genetics .................................................................................. 15 1.2.1. Genetic Epidemiology .................................................................................... 15 1.2.2. Terminology ..................................................................................................... 17 1.2.3. Mendelian disorders ....................................................................................... 20 1.2.4. Past and present hypotheses on Mendelian disorders .............................. 24 1.2.5. Complex disorders .......................................................................................... 26 1.2.6. Past and present hypotheses on Complex disorders ................................. 30 1.3. Consanguinity and Genetic research ................................................................... 33 1.3.1. Consanguineous societies and genetic disease ........................................... 36 1.3.2. Inbreeding depression in humans? .............................................................. 37 1.3.3. Historical perspective ..................................................................................... 45 1.3.4. Autozygosity ................................................................................................... 50 1.3.5. World-wide Consanguinity ........................................................................... 55 1.4. Identifying the Genetic basis of human diseases ............................................... 60 1.4.1. Traditional methods ....................................................................................... 61 1.4.2. Current methods ............................................................................................. 62 1.5. Detecting DNA sequence variation ..................................................................... 63 1.5.1. Whole genome sequencing ............................................................................ 65 1.5.2. Whole exome sequencing .............................................................................. 66 1.5.3. Other methods ................................................................................................. 68 v 1.6. DNA Sequencing technologies ............................................................................. 71 1.6.1. Historical background .................................................................................... 71 1.6.2. Next-generation sequencing .......................................................................... 72 1.7. Population-based genetic variation datasets: why collect them? .................... 73 1.7.1. Projects for mapping human genetic variation .......................................... 74 1.7.2. Clinical uses ..................................................................................................... 77 1.7.3. Bioinformatics uses ......................................................................................... 77 1.8. Summary of Aims and Objectives ....................................................................... 78 Chapter 2. Overview of methods ........................................................................................ 80 2.1. Materials/samples ................................................................................................. 80 Participants ............................................................................................................................... 80 Blood samples ..........................................................................................................................
Recommended publications
  • Cousin Marriage & Inbreeding Depression
    Evidence of Inbreeding Depression: Saudi Arabia Saudi Intermarriages Have Genetic Costs [Important note from Raymond Hames (your instructor). Cousin marriage in the United States is not as risky compared to cousin marriage in Saudi Arabia and elsewhere where there is a long history of repeated inter-marriage between close kin. Ordinary cousins without a history previous intermarriage are related to one another by 0.0125. However, in societies with a long history of intermarriage, relatedness is much higher. For US marriages a study published in The Journal of Genetic Counseling in 2002 said that the risk of serious genetic defects like spina bifida and cystic fibrosis in the children of first cousins indeed exists but that it is rather small, 1.7 to 2.8 percentage points higher than for children of unrelated parents, who face a 3 to 4 percent risk — or about the equivalent of that in children of women giving birth in their early 40s. The study also said the risk of mortality for children of first cousins was 4.4 percentage points higher.] By Howard Schneider Washington Post Foreign Service Sunday, January 16, 2000; Page A01 RIYADH, Saudi Arabia-In the centuries that this country's tribes have scratched a life from the Arabian Peninsula, the rule of thumb for choosing a marriage partner has been simple: Keep it in the family, a cousin if possible, or at least a tribal kin who could help conserve resources and contribute to the clan's support and defense. But just as that method of matchmaking served a purpose over the generations, providing insurance against a social or financial mismatch, so has it exacted a cost--the spread of genetic disease.
    [Show full text]
  • Mouse Exph5 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Exph5 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Exph5 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Exph5 gene (NCBI Reference Sequence: NM_176846 ; Ensembl: ENSMUSG00000034584 ) is located on Mouse chromosome 9. 6 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000051014). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Exph5 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-93P8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 2.04% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 35980 bp, and the size of intron 2 for 3'-loxP site insertion: 2349 bp. The size of effective cKO region: ~661 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 6 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Exph5 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Inbreeding Depression in Two Populations of Arenaria Uni¯Ora (Caryophyllaceae) with Contrasting Mating Systems
    Heredity 86 (2001) 184±194 Received 16 November 1999, accepted 17 October 2000 Inbreeding depression in two populations of Arenaria uni¯ora (Caryophyllaceae) with contrasting mating systems LILA FISHMAN Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 U.S.A. I used parallel family-structured crossing designs to investigate the relative performance of self and outcross progeny in sel®ng and predominantly outcrossing populations of the annual plant Arenaria uni¯ora. The selfer population experienced much lower inbreeding depression (d 0.05 0.02 SE) than the outcrossers (d 0.19 0.02 SE). The negative association between genetic load and sel®ng rate suggests that purgable partially recessive alleles are the primary source of inbreeding depression, as does its late expression in both populations. Inbreeding depression in the selfer population, which naturally consists of highly inbred lines, was used to calculate the mean dominance (h 0.33) and incidence rate (U 0.30) of deleterious mutations. In the outcrosser population, signi®cant variation among individuals in the expression of inbreeding depression may re¯ect lineage-speci®c dierences in inbreeding history or, more probably, random variation in mutational load. The low (0.5) inbreeding depression of outcrossers suggests that the maintenance of a mixed mating system in some A. uni¯ora populations and the evolution of nearly cleistogamous self-pollination in others may re¯ect local pollinator-mediated selection for sel®ng rather than the constant 3:2 genetic advantage invoked by many models. Keywords: Arenaria uni¯ora, genetic load, inbreeding depression, mating system, sel®ng.
    [Show full text]
  • Exophilin-5 Regulates Allergic Airway Inflammation by Controlling IL-33–Mediated Th2 Responses
    The Journal of Clinical Investigation RESEARCH ARTICLE Exophilin-5 regulates allergic airway inflammation by controlling IL-33–mediated Th2 responses Katsuhide Okunishi,1 Hao Wang,1 Maho Suzukawa,2,3 Ray Ishizaki,1 Eri Kobayashi,1 Miho Kihara,4 Takaya Abe,4,5 Jun-ichi Miyazaki,6 Masafumi Horie,7 Akira Saito,7 Hirohisa Saito,8 Susumu Nakae,9 and Tetsuro Izumi1 1Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan. 2National Hospital Organization Tokyo National Hospital, Tokyo, Japan. 3Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan. 4Laboratory for Animal Resource Development and 5Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. 6Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan. 7Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 8Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. 9Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. A common variant in the RAB27A gene in adults was recently found to be associated with the fractional exhaled nitric oxide level, a marker of eosinophilic airway inflammation. The small GTPase Rab27 is known to regulate intracellular vesicle traffic, although its role in allergic responses is unclear. We demonstrated that exophilin-5, a Rab27-binding protein, was predominantly expressed in both of the major IL-33 producers, lung epithelial cells, and the specialized IL-5 and IL-13 producers in the CD44hiCD62LloCXCR3lo pathogenic Th2 cell population in mice.
    [Show full text]
  • Genetic Inbreeding Depression Load for Morphological Traits and Defects in the Pura Raza Española Horse Julia Poyato‑Bonilla1† , Davinia I
    Poyato‑Bonilla et al. Genet Sel Evol (2020) 52:62 https://doi.org/10.1186/s12711‑020‑00582‑2 Genetics Selection Evolution RESEARCH ARTICLE Open Access Genetic inbreeding depression load for morphological traits and defects in the Pura Raza Española horse Julia Poyato‑Bonilla1† , Davinia I. Perdomo‑González1*† , María J. Sánchez‑Guerrero1 , Luis Varona2 , Antonio Molina3 , Joaquim Casellas4 and Mercedes Valera1 Abstract Background: Inbreeding is caused by mating between related individuals and is associated with reduced ftness and performance (inbreeding depression). Several studies have detected heterogeneity in inbreeding depression among founder individuals. Recently, a procedure was developed to predict hidden inbreeding depression load that is associ‑ ated with founders using the Mendelian sampling of non‑founders. The objectives of this study were to: (1) analyse the population structure and general inbreeding, and (2) test this recent approach for predicting hidden inbreeding depression load for four morphological traits and two morphology defects in the Pura Raza Española (PRE) horse breed. Results: The regression coefcients that were calculated between trait performances and inbreeding coefcients demonstrated the existence of inbreeding depression. In total, 58,772,533 partial inbreeding coefcients (Fij) were esti‑ mated for the whole PRE population (328,706 horses). We selected the descendants of horses with a Fij 6.25% that contributed to at least four ofspring and for which morphological traits were measured for the subsequent≥ analysis of inbreeding depression load (639 horses). A pedigree was generated with the last fve generations (5026 animals) used as the reference population (average inbreeding coefcient of 8.39% and average relatedness coefcient of 10.76%).
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition
    HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition Charles Richard Bradshaw1¤a, Vineeth Surendranath1, Robert Henschel2,3, Matthias Stefan Mueller2, Bianca Hermine Habermann1,4*¤b 1 Bioinformatics Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony, Germany, 2 Center for Information Services and High Performance Computing (ZIH), Technical University, Dresden, Saxony, Germany, 3 High Performance Applications, Pervasive Technology Institute, Indiana University, Bloomington, Indiana, United States of America, 4 Bioinformatics Laboratory, Scionics c/o Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony, Germany Abstract Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes.
    [Show full text]
  • Inbreeding Depression in Conservation Biology
    P1: FOF September 25, 2000 9:54 Annual Reviews AR113-07 Annu. Rev. Ecol. Syst. 2000. 31:139–62 Copyright c 2000 by Annual Reviews. All rights reserved INBREEDING DEPRESSION IN CONSERVATION BIOLOGY Philip W. Hedrick Department of Biology, Arizona State University, Tempe, Arizona 85287; email: [email protected] Steven T. Kalinowski Conservation Biology Division, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, Washington 98112; email: [email protected] Key Words endangered species, extinction, fitness, genetic restoration, purging ■ Abstract Inbreeding depression is of major concern in the management and con- servation of endangered species. Inbreeding appears universally to reduce fitness, but its magnitude and specific effects are highly variable because they depend on the genetic constitution of the species or populations and on how these genotypes interact with the environment. Recent natural experiments are consistent with greater inbreeding depression in more stressful environments. In small populations of randomly mating individuals, such as are characteristic of many endangered species, all individuals may suffer from inbreeding depression because of the cumulative effects of genetic drift that decrease the fitness of all individuals in the population. In three recent cases, intro- ductions into populations with low fitness appeared to restore fitness to levels similar to those before the effects of genetic drift. Inbreeding depression may potentially be reduced, or purged, by breeding related individuals. However, the Speke’s gazelle example, often cited as a demonstration of reduction of inbreeding depression, appears to be the result of a temporal change in fitness in inbred individuals and not a reduction in inbreeding depression.
    [Show full text]
  • Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico
    animals Article Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico Jorge Hidalgo 1 , Alberto Cesarani 1 , Andre Garcia 1, Pattarapol Sumreddee 2, Neon Larios 3 , Enrico Mancin 4, José Guadalupe García 3,*, Rafael Núñez 3 and Rodolfo Ramírez 3 1 Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; [email protected] (J.H.); [email protected] (A.C.); [email protected] (A.G.) 2 Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani 12000, Thailand; [email protected] 3 Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; [email protected] (N.L.); [email protected] (R.N.); [email protected] (R.R.) 4 Department of Agronomy, Food, Natural Resources, Animals and Environment-DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Simple Summary: The objective of this study was to evaluate the genetic background and inbreeding depression in the Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH). Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals; 71 had genotypes. Citation: Hidalgo, J.; Cesarani, A.; LD decreased with the increase in distance between markers, and Ne estimated using genomic Garcia, A.; Sumreddee, P.; Larios, N.; information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using Mancin, E.; García, J.G.; Núñez, R.; pedigree information was 86.44.
    [Show full text]
  • Impact of Consanguineous Marriages and Degrees of Inbreeding On
    nature publishing group Articles Population Study Impact of consanguineous marriages and degrees of inbreeding on fertility, child mortality, secondary sex ratio, selection intensity, and genetic load: a cross-sectional study from Northern India Mohd Fareed1, Mir Kaisar Ahmad2, Malik Azeem Anwar1 and Mohammad Afzal1 BACKGROUND: The aim of our study was to understand the health services has been found to be more frequent among low relationship between consanguineous marriages and repro- socioeconomic and uneducated families (1). ductive outcomes. Consanguineous marriages have been practised for thou- METHODS: A total of 999 families were recruited from five sands of years in many communities throughout the world. Muslim populations of Jammu region. Family pedigrees were The prevalence of consanguinity varies among different coun- drawn to access the family history and inbreeding status in tries, usually associated with different demographic features, terms of coefficient of inbreeding (F). Fertility, mortality, sec- such as religion, education, SES, geography and size of the ondary sex ratio, selection intensity, and lethal equivalents area, isolation of the population, and living in rural or urban were measured using standard methods. set up (2). Parental consanguinity has been associated with RESULTS: The significant differences for gross fertility was stillbirths, low birth weight, preterm delivery, abortion, infant found to be higher among inbred groups as compared to the and child mortality, congenital birth defects, cognitive impair- unrelated families (P < 0.05) and higher mortality rates were ments, cardiovascular risks, malformations, and several other observed among consanguineous families of all populations complex disorders (3–10). in comparison with the non-consanguineous family groups.
    [Show full text]