<I>Moringua Edwardsi</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>Moringua Edwardsi</I> BULLETIN OF MARINE SCIENCE, 29(1): 1-18, 1979 EARLY LIFE-HISTORY OF THE EEL MORINGUA EDWARDSI (PISCES, MORINGUIDAE) IN THE WESTERN NORTH ATLANTIC P. H. J. Castle ABSTRACT The eel Morillgua edwardsi (Jordan and Bollman, 1889) is known principally from immature specimens in the western North Atlantic from Bermuda southwards to Atlantic Panama and Colombia. Its distinctive larva, earlier recognized as Leptocephalus diptychus Eigenmann, 1900, has about seven alternating, midlateral melanophores and also one in front of the anus. Larvae have 110-124 myomeres, hatch at about 5 mm TL and reach full growth at 50 mm TL, a process which takes 3-5 months, before metamorphosis begins. They live in the upper 35 ill and occur over a broad area of the western North Atlantic encompassing 1O°-40oN and 40o_88°W but those of about 10 mm TL occur only near the Caribbean Islands. Spawning is suggested to occur in the Caribbean the year round but principally at monthly intervals from November to April. Some larvae are dispersed out into the Atlantic by the Gulf Stream. This pattern of distribution and dispersal is similar to that of the only other Atlantic moringuid Neoconger mucronatus Girard, 1859. At a time when the classification of the 1968) to clarify the nomenclature of the eels is undergoing critical scrutiny, major Moringuidae pointed out that at least one difficulties are still being presented by the character (number of vertebrae) would family Moringuidae. Moringuid eels are need to be considered in any re-appraisal readily captured with piscicides in many of moringuid classification. However, it be- shallow areas of the tropical Indo-Pacific came clear from the previous study that and western Atlantic Oceans and are con- vertebral numbers were, alone, insufficient sequently abundant in museum collections to distinguish the species. around the world. However, it is still not While it is now reasonably certain that possible confidently to identify the Indo- the Moringuidae contains but two genera: Pacific species. Furthermore, little is known Moringua Gray, 1831 and Neoconger about the life-history and biology of these Girard, 1858 (Smith and Castle, 1972) eels, including the complex changes which this was not always considered to be so. they appear to undergo prior to maturation Species of Moringua have at times been (Gosline and Strasburg, 1956). described in six families, the Ratabouridae, The most substantial key to members of Ptyobranchidae, Moringuidae, Stilbiscidae, the family, based essentially on body pro- Echelidae, and Anguillichthyidae and under portions and other external characters ten other generic names: Rataboura Gray, (Schultz, et aI., 1953) was seriously ques- 1831, Pterurus Swainson, 1839; Pachyurus, tioned by Gosline and Strasburg (1956) Swainson, 1839; Ptyobranchus McClelland, who demonstrated marked sexual dimorph- 1844; Aphthalmichthys Kaup, 1856; Pseu- ism in Hawaiian moringuids which they domoringua Bleeker, 1865; Stilbiscus Jor- referred to Moringua macrochir Bleeker, dan and Bollman, 1889; Mayerina Silvester, 1855. This observation was foreshadowed 1915; A nguillichthys Mowbray, 1927 and by the brief studies of Parr (1930) and Merinthichthys Howell Rivero, 1935. The Gordon (1954) on Moringua edwardsi distinctions between these nominal genera (Jordan and Bollman, 1889) in the tropical were drawn essentially on the basis of what West Atlantic. My own attempt (Castle, most probably are morphological changes 2 BULLET]N OF MARINE SCIENCE, VOL. 21, NO. ], ]979 during maturation of males and females, i.e., distinctive for them to have been readily those shown for Hawaiian moringuids and separated 'rom leptocephali of Neoconger known also to occur in other species. These mucronatu;', the only other moringuid spe- changes are indeed as marked as any seen cies in the western North Atlantic. More- in fishes as a group and are certainly more over, the .arvae of M. edwardsi are very than occur in any other genus of eels. It is well represented in the DANA Oceano- now widely accepted that immature morin- graphical Collections as some 1200 speci- guids pass through an "Aphthalmichthys" mens frorr. various Danish expeditions in phase with reduced eyes and fins and that the Atlantc, but mainly from the DANA the "Stilbiscus-Anguillichthys" form with cruises 1920-22. The material included larger eyes and fins is not adopted until specimens of 7.5 mm to 49 mm total maturity of both males and females. How- lengths, as well as metamorphic larvae. From ever, the precise relationship between stage such a L1rge number, wide size and of gonad development, as established geographic 11 range, it is now possible to histologically, and body form has yet to be describe tl e larval life of M. edwardsi as fully studied and described. has already been done for Neoconger It has recently been shown (Castle and mucronatu.: in the western Atlantic (Smith Bohlke, 1976) that the very considerable and Castlt:, 1972) and also to compare variation in body form and particularly these two moringuid species. body size attained at maturity in M. A furth~r 280 moringuid larvae were edwardsi is correlated with sex: mature also collected by the DANA in the Indo- males are only 115-155 mm in length while Pacific OCf an during the Round-the-World females with clearly recognizable ova attain Expedition 1928-30. Some 34 species of 245-360 mm. Furthermore, males have Moringua have been described from this 109-117 vertebrae and females 116-125, ocean (Ca,tle, 1968) but there are almost there being a significant difference in the certainly many fewer valid species. Schultz mean vertebral number in the sexes (112.6 et al. (19.53) recognize 14. My previous and 119.4 in males and females respec- review (Clstle, 1968) suggests that there tively). This discovery at last resolves the are probably about 10 species with a major long-standing problem of the wide variation group ha\ ing vertebral numbers in the in morphology of M. edwardsi and also range 105-130, but with others at about anticipates similar findings in the Indo- 150 and 160. The Indo-Pacific larvae Pacific complex of species. collected JY the DANA have myomeres The present contribution to knowledge ranging fom 98-180 with most between of these eels does not seek to describe or 105-130 arid other groupings at 150, 160, explain these changes in body form, nor and 170. The larval counts therefore to determine the significance of this poly- broadly conform with vertebral numbers of morphism in their life. A clarification of adults. However, adults of Indo-Pacific these phenomena and of specific distinctions moringuidE have not been studied on a and nomenclature in the Indo-Pacific spe- comprehensive basis and as yet it is difficult cies must await a comprehensive systematic to assign most of the larvae from this study including a familiarity with morin- ocean to their adult species. guids in the field. The sekction of Moringua edwardsi en- The purpose of this report is simply to ables a stujy to be made of larval variation, described that part of the life-history prior growth, d.spersal, and distribution in a to metamorphosis of the leptocephalus of single mo 'inguid species without encum- the single Atlantic species Moringua ed- brance of the problems of specific distinc- wardsi. This species lends itself well to tion and :lomenclature that would be in- such a study since the larvae are sufficiently volved in H similar study of the Indo-Pacific CASTLE: LIFE-HISTORY OF EEL MOR/NGVA EDWARDSI 3 species. Knowledge of these aspects of lar- moringuid AphthalmichtllYs caribbeus, a name that val biology of a single, well-characterized was to be later overlooked. In the same year Eigenmann (1900) described Leptocephalus dip- species will perhaps serve as a basis for tye/IIIS, a larval form which was not identified dealing with the Indo-Pacific complex in until many years later. Other families, genera, and due course. species were from time to time admitted to this The larval form of M. edwardsi has been group with the description of Mayerina mayeri known for many years but it has only Silvester, A ngllillichtllYs bahamellsis Mowbray (Anguillichthyidae), Moringlla boekei Metzelaar recently been recognized as such (Eldred, and the Stilbiscidae (Parr). 1968; Castle, 1968; 1969). Eigenmann As more information became available on these (1900) described Leptocephalus diptychus forms the taxa were progressively reduced in num- from two western Atlantic specimens but ber. It became generally accepted, though not definitely proven, that there is but the single spe- Castle ( 1965) showed that leptocephali cies present in the western North Atlantic which with the characters of this species were necessarily must take the name Morillglla edwardsi referable to Moringua. Eldred (1968) de- (Jordan and Bollman, 1889). Castle and Bohlke scribed a further four leptocephali. Thus, (1976), in a study of mainly U.S. material, includ- ing several hundred immature and 40 mature speci- M. edwardsi larval has hitherto been re- mens, as well as some of the DANAlarvae described ported from only six specimens and nothing in this report, finally confirmed this suggestion. further has been known of the early life history of this species. Moringua edwardsi (Jordan and Bollman) Figures 1-13 MATERIAL Stilbiscils edwardsi Jordan and Bollman, 1889: The material for this study came from the fol- 549 (original description, holotype USNM lowing sources, with abbreviations used for them 41735, 337 mm, Green Turtle Cay, Bahamas). in the synonymy and the station list appended: Jordan and Davis, 1892: 645 (description). Jor- ZMUC-DANA Oceanographical Collections, Zoo- dan and Evermann, 1896: 363 (description, based logical Museum, University of Copenhagen, Cop- on original). Jordan, Evermann and Clark, 1930: 89 (listed). Parr, 1930: 15 (description, 1 speci- enhagen; UMML-Rosenstiel School of Marine men BOC 2562, Crooked Island, Bahamas). and Atmospheric Science, University of Miami; Gordon, 1954: 11 (7 specimens, AMNH, 137- URI-University of Rhode Island; FSBC-Florida 368 mOl, Bimini, Bahamas).
Recommended publications
  • Moringua Edwardsi (Moringuidae: Anguilliformes): Cranial Specialization for Head-First Burrowing?
    JOURNAL OF MORPHOLOGY 266:356–368 (2005) Moringua edwardsi (Moringuidae: Anguilliformes): Cranial Specialization for Head-First Burrowing? N. De Schepper,* D. Adriaens, and B. De Kegel Ghent University, Evolutionary Morphology of Vertebrates, 9000 Ghent, Belgium ABSTRACT The order Anguilliformes forms a natural Moringuidae burrow head-first (Castle, 1968; Smith group of eel-like species. Moringua edwardsi (Moringui- and Castle, 1972; Smith, 1989a). It is striking that dae) is of special interest because of its peculiar fossorial only immature specimens of M. edwardsi spend all lifestyle: this species burrows head-first. Externally pro- their time burrowed in the sand (Gordon, 1954; Gos- nounced morphological specializations for a fossorial life- line, 1956). Adults seem to limit their burrowing style include: reduced eyes, lack of color, low or absent behavior, as they leave their burrows during the paired vertical fins, elongated, cylindrical body, reduced head pores of the lateral line system, etc. Many fossorial night (Smith, 1989a). Smith (1989a) mentions rapid amphibians, reptiles, and even mammals have evolved movements of the body, just beneath the surface, for similar external specializations related to burrowing. The subterranean hunting and feeding. The modification present study focuses on osteological and myological fea- of the snout into a solid conical structure, combined tures of M. edwardsi in order to evaluate the structural with a protruding lower jaw, facilitate burrowing, modifications that may have evolved as adaptations to where power is provided by the cylindrical body burrowing. Convergent evolutionary structures and pos- (Castle, 1968; Smith, 1989a). As immature speci- sible relations with head-first burrowing, miniaturization, mens spend most of their time buried in the sand, feeding habits, etc., were investigated.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • Weekly Report, Leg 1 (01.04
    Weekly Report, Leg 1 (01.04. to 05.04.2015) Research Vessel Maria S. Merian left Pennos Wharf in St. George’s, Bermuda as scheduled on 01.04.2015 at 9:00 o´clock after four hours of fuel bunkering in the dockyards. With a strong breeze she steamed from Bermuda towards the first sampling station on our westernmost transect at 70°W, 30°N. The first trial run of all sampling gear was successful except for the CTD probe (Figure 1), which due to some defect showed strong deviations from the expected temperature and salinity data. After intensive efforts and various steps to repair the probe, the problem could be solved and all data were successfully recalibrated. The deployment of the multinet, the two Isaaks-Kidd midwater trawls (0.5 and 5 mm mesh size) (Figure 2), the 1 m2 MOCNESS (Figure 3) and Manta trawls worked fine, although is was decided to run the IKMTs from the stern instead of the starboard side. The cooperation with the ship´s crew is excellent. Station planning follows the programme suggested in the ship´s research proposal and is carried out in close communication with the captain and scientists. Each station of the first transect includes the deployment of a CTD and an IKMT. In addition, MOCNESS and multinet, respectively, as well as the 5-mm IKMT are used alternatively at two neighbouring stations. The Manta trawl may be deployed parallel to other trawled gear, captain permitting. The tedious sorting of the plankton samples of all gears is carried out directly after each catch.
    [Show full text]
  • Anguilliformes and Saccopharyngiformes
    Anguilliformes and Saccopharyngiformes Selected meristic characters in species belonging to the orders Anguilliformes or Saccopharyngiformes whose adults or larvae have been collected in the study area. Classification sequence follows Böhlke, 1989. Characters pertain to leptocephali, unless otherwise indicated. Sources: Smith, 1989a; 1989b (and all chapters therein); vert = vertebrae. Last Vertical No. of Gut Family Total Preanal Predorsal Blood Vessel Loops or Species Myomers Myomeres Myomers @ Myomere # Swellings Anguilliformes – Anguillidae Anguilla anguilla 111–119 – – – 0 Anguilla rostrata 103–111 68–73 61–66 44–47 0 Moringuidae Neoconger mucronatus 93–109 49–61 39–56 50–59 1 Moringua edwardsi 109–123 72–82 79–87 70–79 1 Muraenidae Anarchias similis 105–114 52–59 96–104 53–57 0 Gymnothorax funebris (adult) 137–142 – – – – Gymnothorax miliaris 120–125 69–74 68–73 64–69 0 Gymnothorax moringa 137–143 66–74 52–61 60–72 0 Gymnothorax ocellatus 136–150 85–101 22–32 77–87 0 Gymnothorax vicinus 131–142 60–68 53–63 60–67 0 Monopenchelys acuta 128–134 54–57 78–82 60–62 0 Uropterygius macularius 118–123 71–77 107–114 65–67 0 Synaphobranchidae Dysomma anguillare 118–128 57–62 45–48 60–64 6 Ilyophis brunneus (adult) 145–151 vert – – – – Leptocephalus dolichorhynchus 128–136 61–71 – – 1 Leptocephalus proboscoideus 128–134 72–79 69 59–62 0 Simenchelys parasiticus (adult) 115–117 vert – – – – Synaphobranchus affinis 128–139 vert – – – – Synaphobranchus bathybius (adult) 126–140 vert – – – – Synaphobranchus capensis (adult) 164–173 vert – – – – Synaphobranchus kaupi 143–154 98–107 (see species) 68–73 0 Synaphobranchus sp.
    [Show full text]
  • A Revised Metric for Quantifying Body Shape in Vertebrates
    Author's personal copy Zoology 116 (2013) 246–257 Contents lists available at SciVerse ScienceDirect Zoology jou rnal homepage: www.elsevier.com/locate/zool A revised metric for quantifying body shape in vertebrates a, a b a David C. Collar ∗, Crystal M. Reynaga , Andrea B. Ward , Rita S. Mehta a Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California, 100 Shaffer Road, Santa Cruz, CA 95060, USA b Department of Biology, Adelphi University, Garden City, NY 11530, USA a r t i c l e i n f o a b s t r a c t Article history: Vertebrates exhibit tremendous diversity in body shape, though quantifying this variation has been chal- Received 23 August 2012 lenging. In the past, researchers have used simplified metrics that either describe overall shape but reveal Received in revised form 9 February 2013 little about its anatomical basis or that characterize only a subset of the morphological features that con- Accepted 20 March 2013 tribute to shape variation. Here, we present a revised metric of body shape, the vertebrate shape index Available online 27 May 2013 (VSI), which combines the four primary morphological components that lead to shape diversity in verte- brates: head shape, length of the second major body axis (depth or width), and shape of the precaudal and Keywords: caudal regions of the vertebral column. We illustrate the usefulness of VSI on a data set of 194 species, Axial skeleton primarily representing five major vertebrate clades: Actinopterygii, Lissamphibia, Squamata, Aves, and Body shape diversity Mammalia. We quantify VSI diversity within each of these clades and, in the course of doing so, show Comparative anatomy Elongation how measurements of the morphological components of VSI can be obtained from radiographs, articu- Locomotion lated skeletons, and cleared and stained specimens.
    [Show full text]
  • SPECIAL PUBLICATION No
    The J. L. B. SMITH INSTITUTE OF ICHTHYOLOGY SPECIAL PUBLICATION No. 14 COMMON AND SCIENTIFIC NAMES OF THE FISHES OF SOUTHERN AFRICA PART I MARINE FISHES by Margaret M. Smith RHODES UNIVERSITY GRAHAMSTOWN, SOUTH AFRICA April 1975 COMMON AND SCIENTIFIC NAMES OF THE FISHES OF SOUTHERN AFRICA PART I MARINE FISHES by Margaret M. Smith INTRODUCTION In earlier times along South Africa’s 3 000 km coastline were numerous isolated communities. Interested in angling and pursuing commercial fishing on a small scale, the inhabitants gave names to the fishes that they caught. First, in 1652, came the Dutch Settlers who gave names of well-known European fishes to those that they found at the Cape. Names like STEENBRAS, KABELJOU, SNOEK, etc., are derived from these. Malay slaves and freemen from the East brought their names with them, and many were manufactured or adapted as the need arose. The Afrikaans names for the Cape fishes are relatively uniform. Only as the distance increases from the Cape — e.g. at Knysna, Plettenberg Bay and Port Elizabeth, do they exhibit alteration. The English names started in the Eastern Province and there are different names for the same fish at towns or holiday resorts sometimes not 50 km apart. It is therefore not unusual to find one English name in use at the Cape, another at Knysna, and another at Port Elizabeth differing from that at East London. The Transkeians use yet another name, and finally Natal has a name quite different from all the rest. The indigenous peoples of South Africa contributed practically no names to the fishes, as only the early Strandlopers were fish eaters and we know nothing of their language.
    [Show full text]
  • An Analysis of the West Nggela (Solomon Islands) Fish Taxonomy
    2 SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 – February 1998 Map of the Solomon Islands showing West Nggela region Figure 1: Figure SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 – February 1998 3 What’s in a name? An analysis of the West Nggela (Solomon Islands) fish taxonomy. by Simon Foale 1 Introduction Lobotidae, Gerreidae, Sparidae, Ephippidae, Chaetodontidae, Pomacentridae, Cirhitidae, Accurate knowledge about the behaviour, biol- Polynemidae, Labridae, Opistognathidae, ogy and ecology of organisms comprising marine Trichonotidae, Pinguipedidae, Blenniidae, fisheries is a vital prerequisite for their manage- Gobiidae, Microdesmidae, Zanclidae, Bothidae, ment. Before beginning any study on local knowl- Pleuronectidae, and Soleidae. edge of marine fauna, a working knowledge of The English names of many species of fish vary their local names must be obtained. Moreover, a quite a bit, even within one country such as great deal of local knowledge can often emerge in Australia. For most of the species listed in the very process of obtaining names (Ruddle, Appendix 1, I have used the English names given 1994). A detailed treatment of the local naming by Randall et al. (1990). For species not included in system of West Nggela marine fauna is given in Randall et al. (1990), names from Kailola (1987a, b, this paper. 1991) were used. Methods Results Local names of fish were collected by asking Appendix 1 contains 350 unique Nggela folk people to provide the Nggela names for fishes taxa for cartilaginous and bony fishes, together from photographs in books featuring most of the with the scientific (Linnean) taxa they correspond common Indo-Pacific species (Randall et al., 1990 to and, where available, a brief note describing an and Myers, 1991).
    [Show full text]
  • Mariana-FEP-SAFE-Rep
    ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT: MARIANA ARCHIPELAGO FISHERY ECOSYSTEM PLAN 2016 Western Pacific Regional Fishery Management Council 1164 Bishop St., Suite 1400 Honolulu, HI 96813 PHONE: (808) 522-8220 FAX: (808) 522-8226 www.wpcouncil.org The ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT for the MARIANA ARCHIPELAGO FISHERY ECOSYSTEM 2016 was drafted by the Fishery Ecosystem Plan Team. This is a collaborative effort primarily between the Western Pacific Regional Fishery Management Council, NMFS-Pacific Island Fisheries Science Center, Pacific Islands Regional Office, Division of Aquatic Resources (HI) Department of Marine and Wildlife Resources (AS), Division of Aquatic and Wildlife Resources (Guam), and Division of Fish and Wildlife (CNMI). This report attempts to summarize annual fishery performance looking at trends in catch, effort and catch rates as well as provide a source document describing various projects and activities being undertaken on a local and federal level. The report also describes several ecosystem considerations including fish biomass estimates, biological indicators, protected species, habitat, climate change and human dimensions. Information like marine spatial planning and best scientific information available for each fishery are described. This report provides a summary of annual catches relative to the Annual Catch Limits established by the Council in collaboration with the local fishery management agencies. Edited By: Marlowe Sabater, Asuka Ishizaki, Rebecca Walker, and Sylvia Spalding, WPRFMC This document can cited as follows: WPRFMC 2017. Annual Stock Assessment and Fishery Evaluation Report for the Mariana Archipelago Fishery Ecosystem Plan 2016. Sabater, M., Ishizaki, A., Walker, R., Spalding, S. (Eds.) Western Pacific Regional Fishery Management Council.
    [Show full text]
  • Deep-Ocean Origin of the Freshwater Eels
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Biol. Lett. (2010) 6, 363–366 2003) occupy more basal positions in the published doi:10.1098/rsbl.2009.0989 phylogenies, Tsukamoto et al. (2002) hypothesized Published online 6 January 2010 two phases in the evolution of catadromous migrations Evolutionary biology of freshwater eels: (i) their migratory behaviour originated in tropical ocean areas and (ii) that tropical species subsequently expanded their ‘migration loops’ Deep-ocean origin of the (representative migratory pathway of a species), and began to use fresh waters at higher latitudes for their freshwater eels growth (figure 1a). This resulted in the diversification of freshwater eels to include temperate species that Jun G. Inoue1,*,†, Masaki Miya2,*, Michael make long migrations back to their tropical spawning J. Miller1, Tetsuya Sado2, Reinhold Hanel3, areas. This argument is consistent with the Gross Kiyotaka Hatooka4, Jun Aoyama1, Yuki Minegishi1, 1 1 et al. (1988) prediction that catadromy has evolved in Mutsumi Nishida and Katsumi Tsukamoto low-latitude tropical areas where productivity in fresh- 1Ocean Research Institute, The University of Tokyo, water exceeds that in the ocean. In contrast to eels, the Tokyo 164-8639, Japan 2Natural History Museum and Institute, Chiba, Chiba 266-8682, Japan freshwater origin of anadromous salmon has been 3Johann Heinrich von Thu¨nen-Institut 22767, Hamburg, Germany demonstrated (Ishiguro et al. 2003), which indicates 4Osaka Museum of Natural History, Osaka 546-0034, Japan that they expanded their life histories to include the *Authors for correspondence ( [email protected], [email protected]) use of the ocean for growth while still returning to †Present address: University College London, London WC1E 6BT, UK.
    [Show full text]
  • Elopomorph Larvae Are Important Contributors to Fish Biodiversity in a Low-Latitude Oceanic Ecosystem
    fmars-07-00169 April 27, 2020 Time: 22:6 # 1 ORIGINAL RESEARCH published: 29 April 2020 doi: 10.3389/fmars.2020.00169 Hiding in Plain Sight: Elopomorph Larvae Are Important Contributors to Fish Biodiversity in a Low-Latitude Oceanic Ecosystem Jon A. Moore1,2*, Dante B. Fenolio3, April B. Cook4 and Tracey T. Sutton4 1 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States, 2 Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States, 3 Center for Conservation and Research, San Antonio Zoo, San Antonio, TX, United States, 4 Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States Leptocephalus larvae of elopomorph fishes are a cryptic component of fish diversity in nearshore and oceanic habitats. However, identifying those leptocephali can be important in illuminating species richness in a region. Since the Deepwater Horizon oil spill in 2010, sampling of offshore fishes in the epi-, meso-, and upper bathypelagic Edited by: depth strata of the northern Gulf of Mexico resulted in 8989 identifiable specimens of Michael Vecchione, leptocephalus larvae or transforming juveniles, in 118 taxa representing 83 recognized National Oceanic and Atmospheric Administration (NOAA), United States and established species and an additional 35 distinctive leptocephalus morphotypes Reviewed by: not yet linked to a known described species. Leptocephali account for ∼13% of the Mackenzie E. Gerringer, total species richness of fishes collected in the offshore region. A new morphotype SUNY Geneseo, United States Dave Johnson, of Muraenidae leptocephalus is also described. We compare this study with other National Museum of Natural History leptocephalus diversity studies in the western Atlantic.
    [Show full text]
  • An Annotated Checklist of the Inland Fishes of Sulawesi 77-106 © Biodiversity Heritage Library
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2015 Band/Volume: 64 Autor(en)/Author(s): Miesen Friedrich Wilhelm, Droppelmann Fabian, Hüllen Sebastian, Hadiaty Renny Kurnia, Herder Fabian Artikel/Article: An annotated checklist of the inland fishes of Sulawesi 77-106 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bonn zoological Bulletin 64 (2): 77–106 March 2016 An annotated checklist of the inland fishes of Sulawesi Friedrich Wilhelm Miesen1*, Fabian droppelmann1, Sebastian Hüllen1, renny Kurnia Hadiaty2 & Fabian Herder1 1Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany 2Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia; E-mail: [email protected]; +49 (0)228 9122 431 Abstract. Sulawesi is the largest island of the Wallacea. Here, we present an annotated checklist of fish species record- ed in Sulawesi’s inland waters. We recognize a total of 226 species from 112 genera and 56 families. Gobiidae (41 species), Adrianichthyidae (20 species) and Telmatherinidae (19 species) are most species-rich, making up a total of 43% of the total species diversity. 65 species are endemic to Sulawesi’s freshwaters, including 19 Tematherinidae, 17 Adrianichthyi- dae, and 17 Zenarchopteridae. 44% of the inland fish fauna are obligate freshwater fishes, followed by euryhaline (38%) and amphi-, ana- or diadromous (29%) taxa. 65 species have been recorded from lacustrine environments. However, we stress that the data available are not representative for the island’s freshwater habitats. The fish species diversity of the spectacular lakes is largely explored, but the riverine ichthyofaunas are in clear need of further systematic exploration.
    [Show full text]