Supplemenary information: Functions of prioritised Family #1

1. SETDB1: Encodes histone methyl and involved in the regulation of a large neuron specific topological chromatin domain(Jiang et al., 2017)and known to regulate mood related behaviours and NMDA receptor subunit NR2B expression (Jiang et al., 2017) 2. LRP2: is a member of the LDL receptor family, the is involved in various neurodevelopmental processes and signalling (Auderset et al., 2016; Fisher and Howie, 2006; Gomes et al., 2016; Spoelgen, 2005; Spuch et al., 2012) 3. TTC21B: Involved in various neurodevelopmental processes (Driver et al., 2017; Stottmann et al., 2009). 4. ADAMTS3: Encodes a member of the ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs) family. Recently the protein is reported to inactivate Reelin (RELN), which is involved in cell positioning and neuronal migration during brain development and modulate NMDA receptor function (Campo et al., 2009; Chen, 2005). A segregating rare variant in RELN is reported in a family with SZ and in an animal model showing behavioral abnormalities related to neuropsychiatric disorders (Sakai et al., 2016; Z. Zhou et al., 2016). 5. LRRTM2: Through the interaction with PSD-95 LRRTM2 regulates surface expression of AMPA receptors and through the LRRTM2 interaction with Neurexin1 the gene also has an important role in excitatory synapse development(de Wit et al., 2009) and maintenance of long-term potentiation (Soler-Llavina et al., 2013). The knockout micealso showed behavioural abnormalities (Voikar et al., 2013). 6. TIAM2: encodes guanine nucleotide exchange factor and is involved in neurite outgrowth, neuronal migration and synapse formation in the cerebral cortex (Goto et al., 2011; Kawauchi et al., 2003). 7. GRIN3A: encodes a subunit of the N-methyl-D-aspartate (NMDA) receptors. Knockout mice showed abnormal behavioural and cognitive functions (Mohamad et al., 2013) 8. UNC13B: is a presynaptic protein and is involved in vesicle priming for exocytosis and thus involved in neuro transmission and plasticity (Breustedt et al., 2010; Chen et al., 2013; Jahn and Fasshauer, 2012). Rare missense variants are reported in a multiply affected SZ family from Japan. 9. SHANK2: encodes protein is a member of the Shank family of synaptic , in the postsynaptic density of excitatory synapses, which functions as a molecular scaffold. Because of NMDAR hypofunction and concomitant impairment of NMDAR signalling, Shank2–/– mice showed impaired long-term potentiation (LTP) and long-term depression (LTD). The mutant mice were hyperactive and recapitulated many of the behavioural phenotypes associated with autism spectrum disorder (Schmeisser et al., 2012; Won et al., 2012). Rare variants in this gene are also reported in SZ (Peykov et al., 2015) 10. AKAP5: This gene is involved in AMPA Receptor Phosphorylation and Cell-Surface Targeting (Diering et al., 2014). Knockout mice showed defect in synaptic plasticity, learning and memory related abnormalities (Weisenhaus et al., 2010) 11. PRODH: is located in 22q11, the strongest known risk factor of SZ (Levinson et al., 2011). This catalyses the first step in proline catabolism and activates NMDA and AMPA receptors and may act as a neuromodulator (Cohen and Nadler, 1997; Nadler et al., 1992). The proline is also a precursor for the neurotransmitter glutamate. The same variant rs2904551 is already reported in patients with SZ(Bender et al., 2005; Jacquet et al., 2002; Ota et al., 2014). Deletion of this gene in mice showed various psychiatry relevant phenotypes (Crabtree et al., 2016; Gogos et al., 1999; Paterlini et al., 2005; Williams, 2011) 12. FLNA: involved in neural progenitor proliferation (Lian et al., 2016)and neuronal migration (Lian et al., 2016). The protein is known to interact with glutamate receptor type 7 (Enz, 2002), dopamine D2 and D3 receptors(Lin et al., 2001) and Kv4.2 potassium channels(Lin et al., 2001).

Family #2

1. GABRR3: This gene encodes a subunit of the GABA(C) receptor. Gamma amino butyric acid (GABA) is one of the neurotransmitters in the central nervous system and it regulates synaptic neurotransmission in the neurons. Alteration in the GABA neurotransmitter system is observed in SZ (Wassef et al., 2003) 2. CASR: involved in synaptic plasticity, neurotransmission, neuronal growth (Ruat and Traiffort, 2013) and promotes resting spontaneous glutamate release(Ruat and Traiffort, 2013). 3. DOCK3: regulates BDNF-TrkB signalling and, neurite and axonal outgrowth (Namekata et al., 2012, 2010). It interacts with NMDA receptors containing NR2D subunit and reduces the surface expression of NR2D (Bai et al., 2013) 4. PDE8B: encodes cyclic nucleotide phosphodiesterase (PDE). It is involved in the hydrolysis of the second messenger cAMP and is involved in various cognitive functions (Tsai et al., 2012) 5. MAGI2: involved in the recruitment of AMPA and NMDA-type glutamate receptors (Deng et al., 2006). Structural variations reported in patients with SZ and bipolar disorder (Karlsson et al., 2012; Walsh et al., 2008). Common variants in this gene reportedly increased risk of cognitive impairment in patients with SZ (Koide et al., 2012). 6. GLI3: involved in development of the cerebral cortex, hypothalamus, corpus callosum (Amaniti et al., 2013; Haddad-TÃ3volli et al., 2015; Wilson et al., 2012), and maintenance and fate specification of cortical progenitors (Wang et al., 2011) 7. VPS13B: Has an important role in the development of the central nervous system 8. CALHM1: involved in the regulation of Ca²⁺-dependent MEK, ERK, RSK and MSK signalling in cerebral neurons (Dreses-Werringloer et al., 2013). Involved in memory, long-term potentiation and NMDA and AMPA receptors phosphorylation and knockout mice showed a severe impairment in memory flexibility(Vingtdeux et al., 2016) 9. INA: is involved in intracellular transport to axons and dendrites and morphogenesis of neurons. 10. CACNG7: encodes a type II transmembrane AMPA receptor regulatory protein (TARP), involved in synaptic expression of cerebellar AMPA receptors and function (Kato et al., 2007; Studniarczyk et al., 2013; Yamazaki et al., 2010) 11. PLAUR: encodes the receptor for urokinase plasminogen activator and the gene is involved in the development of GABAergic interneurons and knockout mice have shown various behavioural abnormalities (Eagleson et al., 2011, 2010)

Family #3

1. KIRREL: is a member of the nephrin-like and the protein has an important role in synaptogenesis (Gerke et al., 2006). 2. GBX2: Involved in various neurodevelopmental processes, including neuronal differentiation, migration, growth etc. (Hagan et al., 2017; Sunmonu et al., 2011). 3. CELSR3: conditional knock out of Celsr3, in the mouse hippocampus has shown ∼50% reduction? of glutamatergic synapses and deficits in fear conditioning, spatial learning and memory(Thakar et al., 2017).Their roles in brain development, interneuron migration, glutamatergic synapse formation etc. are previously reported (Feng et al., 2012; Jia et al., 2014; Thakar et al., 2017; Ying et al., 2009). The gene is also known to regulate the expression of NRG1 and its receptor ErbB4 (Ying et al., 2009). 4. SCN11A: encodes a member of the sodium channel alpha subunit gene family and it is required for BDNF evoked depolarization (Blum et al., 2002) 5. UBA6: Involved in development of hippocampus and amygdala. Knockout mice showed various behavioural abnormalities relevant to autism like increased anxiety, impaired communication and decreased social interaction (Hagan et al., 2017; Sunmonu et al., 2011) 6. CDCA7L: involved in negative regulation of A (MAOA) gene expression and implicated in depressive disorder (Johnson et al., 2011; Ou et al., 2006) 7. MINK1: is a postsynaptically enriched protein and required for dendritic arborization and surface expression of AMPA receptors and has a role in maintaining the morphological integrity of dendrites and synaptic transmission (Hussain et al., 2010).

8. NTN1: is a member of laminin-related secreted proteins. Netrin-1 is implicated in the organization, plasticity and function of mesocorticolimbic DA neurons in rodents(Flores, 2011).

Family #4

1. LRRC7: It is known to influence the function of mGluRs and CaMKII at synapses and involved in the localisation of mGluR5 and DISC1 in the PSD fraction. Knockout mice showed various relevant endophenotypes of schizophrenia and autism spectrum disorders(Carlisle et al., 2011). 2. KIF1A: is a member of the kinesin family. It is an anterograde motor protein and involved in the transport of membranous organelles along axonal microtubules. In the brain, interacts with AMPA receptors and therefore could potentially act as a neuronal AMPAR transport in neurons (Shin et al., 2003). It is involved in synapse maturation, postsynaptic density maturation and perisynaptic scaffold organization (Zhang et al., 2017, 2016). 3. SCN10A: encodes a tetrodotoxin-resistant voltage-gated sodium channel alpha subunit, and is involved in action potential initiation and propagation in excitable cells. Hypermorphic mutation of this gene in mice is reported to have a phenotype resembling catatonia in schizophrenic humans (Blasius et al., 2011). 4. FZD9: is a receptor for WNT2 and is involved in Wnt-5a-mediated increase in dendritic spine density in hippocampal neurons (Ramírez et al., 2016) and the gene is involved in various cognitive functions (Ramírez et al., 2016).The knockout mice showed defects in visuospatial learning and memory (Zhao, 2005) 5. SYT12: involved in modulation of spontaneous neurotransmitter release and long-term potentiation (Kaeser-Woo et al., 2013; Maximov et al., 2007) 6. CCKAR: involved in the regulation of central dopamine transmission in brain and absorption rate. Not having CCKAR has been shown to result in significantly elevated levels of extracellular dopamine in the central nervous system (Feifel et al., 2003). The gene has been previously associated with SZ (Koefoed et al., 2009; Sanjuan et al., 2004; Zheng et al., 2012). 7. SMARCC2: is a member of the SWI/SNF family of proteins, involved in cerebral development, neural stem cell proliferation and differentiation. Conditional deletion of the gene in mice shown learning/memory dysfunction (Tuoc et al., 2017, 2013). 8. GNB1L: is located on 22q11, a well know SZ candidate gene. SZ like behaviour is reported in mice with hemizygous deletion (Basson et al., 1999). The gene has been previously associated with SZ (Williams et al., 2008) 9. PQBP1: is a well known mental retardation causative gene (Jensen et al., 2011; Rejeb et al., 2011). It is involved in neural development and cognitive functions (Ito et al., 2015, 2009; Tamura et al., 2010; Yoshimura et al., 2006)

Family #5

1. KDM4A: is involved in BDNF expression, neuronal differentiation and survival (Milstein et al., 2007). 2. NOTCH2: is a member of the Notch family and is involved in various developmental processes. In hippocampal neurons, NOTCH2 is involved in the regulation of Vesicular glutamate transporter 1 (VGLUT1) protein levels (Wojcik et al., 2004) 3. DLG1: is a multi-domain scaffolding protein involved in various developmental processes. In the brain the protein is involved in trafficking and localisation of AMPA and NMDA-type glutamate receptor, Kv1.4, Kv4.2, and Kir2.2 potassium channels and astrocytic glutamate transporter EAAT2b (Cai et al., 2006; Fourie et al., 2014; Hong et al., 2015; Underhill et al., 2015; Walch, 2013). Knockout mice showed reduced sociability (Coba et al., 2018). 4. ABHD6: negatively regulates surface expression of AMPA receptors and synaptic function(Wei et al., 2017, 2016) 5. WASF1: is involved in BDNF-NTRK2 endocytic trafficking and in the regulation of cellular and behavioural actions of cocaine (Ceglia et al., 2017; Xu et al., 2016). Disruption of this gene in mice causes sensorimotor and cognitive deficits (Raber et al., 2002)

6. TRPA1: It is involved in GABA transport in hippocampal astrocytes and the activation of TRPA1 reducing GABA transport by GAT-3,that leads to activation increases the extracellular GABA concentration, which in turn decrease interneuron inhibitory synapse efficacy (Shigetomi et al., 2012). The gene is also involved in the modulation of glutamate release (Sun et al., 2009; Yokoyama et al., 2011) 7. HTR3A: encodes subunit A of the type 3 receptor for 5-hydroxytryptamine (serotonin). This gene is reported to associated with schizophrenic and bipolar disorder (Ji et al., 2008; Niesler et al., 2001b, 2001a). 8. PLCB3: encodes a protein that catalyses the production of diacylglycerol and inositol 1,4,5-triphosphate from phosphatidylinositol. Through the interaction with SHANK2, PLCB3 is involved in the mGluR-mediated calcium signal (Hwang et al., 2005). 9. RIC8A: In the brain, it is involved in the regulation of synapse number and neurotransmitter release (Mansilla et al., 2017; Romero-Pozuelo et al., 2014). Haploisuficiency of the gene in mice causes various behavioural abnormalities such as decreased (increased)? anxiety-like behaviour and impaired spatial memory (Ruisu et al., 2013; Tõnissoo et al., 2006) 10. ARPC3: encodes one of seven subunits of the Arp2/3 protein complex, which is involved in formation of dendritic filopodia and the recruitment of AMPA receptors (Spence et al., 2016).Deletion of this gene in mice showed various abnormalities relevant to SZ related disorders such as cognitive deficits, reduced prepulse inhibition, hyperactivity, and social isolation (Kim et al., 2013). 11. ACTN1: a postsynaptic scaffold protein, in the brain, that knows to interact with SHANK3, TSC1 and HOMER3(Kaeser-Woo et al., 2013). 12. TSC2: is involved in the regulation of the mammalian target of the rapamycin (mTOR) pathway and has an important role in activity dependent protein synthesis in neurons. Activation of NMDAR mediated signalling pathway induces mTOR signaling and negatively regulates TSC2 (Ru et al., 2012). Loss of Tsc2 in the mouse brain showed various phenotypes relevant to autism (Reith et al., 2013; Sato, 2016; Sato et al., 2012) 13. CACNG4: involved in trafficking and gating properties of AMPA glutamate receptors(Korber et al., 2007; Milstein et al., 2007)

Family #6 1. INPP4A: encodes an , which catalyses dephosphorylation of phosphatidylinositol 3,4-bisphosphate, inositol 1,3,4-trisphosphate and inositol 3,4- bisphosphate. It is found in postsynaptic density and involved in the regulation of NMDAR-mediated excitatory postsynaptic current and localization of NMDAR in the synapse (Sasaki et al., 2010) 2. KIF5C: encodes a kinesin heavy chain subunit and involved in cargo transport in the central nervous system. It is also involved in axonal localization of GABA receptors (Smith et al., 2006; Wang and Xu, 2015) 3. IQSEC1: IQSEC1 directly interacts with AMPAR subunit GluA2, which is known to control the activity of IQSEC1. Subsequent IQSEC1 mediated activation of Arf6 promotes AMPAR endocytosis and is essential for mGluR- and NMDAR-dependent LTD(Scholz et al., 2010). It also has an important role in the development of mature glutamatergic synapses(Scholz et al., 2010). 4. NSUN2: encodes RNA methyltransferase that methylates RNAs. With the deletion of NSUN2 Drosophila melanogaster, severe short-term-memory deficits were observed (Abbasi-Moheb et al., 2012) 5. SFRP1: is a member of Wnt inhibitors, which are antagonists of Wnt signalling. Through the regulation of NMDAR currents and synaptic NMDAR subunit composition, the gene is involved in the induction of synaptic plasticity (Panaccione et al., 2013). Its role in dopamine neuron development is also reported (Kele et al., 2012).

6. TNC: This gene has an important role in neurodevelopment and modulation of synaptic functions (Andjus et al., 2005; Dityatev et al., 2007; Evers et al., 2002; Šekeljić and Andjus, 2012).Knockout mice showed abnormal behaviour such as hyperlocomotion, poor sensorimotor coordination and swimming ability. In addition decreased serotonin and dopamine transmission in different parts of the brain such as hippocampus, striatum, cerebral cortex etc. were also observed (Fukamauchi et al., 1996; Stamenkovic et al., 2017).

7. ABL1: encodes a protein tyrosine kinase and involved in receptor endocytosis, cell motility, adhesion, cell growth, DNA damage response and apoptosis. Through the phosphorylation of PSD-95 on tyrosine 533 residue ABL1 regulates PSD-95 clustering and synapse formation. PSD-95 is involved in NMDA and AMPA receptor clustering and localisation (de Arce et al., 2010) 8. LIN7C: enriched in brain synapses.Interacts with PSD-95 and NMDA receptor subunit and is involved in the localisation of NMDA receptor and synaptic vesicle exocytosis(Butz et al., 1998; Jo et al., 1999; Setou et al., 2000) 9. PAX6: encodes a homeobox and paired domain-containing protein, and acts as a regulator of transcription. In the thalamus, it regulates the balance between GABAergic and glutamatergic neurogenesis (Robertshaw et al., 2013) and it is involved in the regulation of balance between neural stem cell self-renewal and neurogenesis (Sansom et al., 2009). It is known to regulate the expression of Na(+) -dependent glutamate transporter GLT-1 (EAAT2) in astrocytes (Ghosh et al., 2016). Pax6 heterozygous rats showed impaired prepulse inhibition (PPI), abnormality in social interaction, impairment in rearing activity as well as in fear-conditioned memory and significantly reduced levels of serotonin levels in the plasma and brain (Tuoc et al., 2009). 10. CHRM4: muscarinic acetylcholine receptor M4, is a member of the G protein-coupled receptors family. It is involved in the regulation of cholinergic and dopaminergic neurotransmission and knockout mice showed elevated dopamine (DA) basal values and enhanced DA response to psychostimulants, dopaminergic hyperexcitability and increased basal acetylcholine efflux in the midbrain (Tzavara et al., 2004). The knockout mice showed increased sensitivity to the psychomimetic phencyclidine (noncompetitive NMDA receptor antagonist) mediated deficits in prepulse inhibition (Tuoc et al., 2009), amphetamine-induced hyperactivity in rats (Brady et al., 2008). 11. LRP4: is a regulator of Wnt signalling and involved in synapse formation (Scholz et al., 2010).Lrp4−/− mice showed defects in postsynaptic integration, synaptic transmission, long-term plasticity, learning and memory (Gomez et al., 2014; Karakatsani et al., 2017; Mosca et al., 2017; Pohlkamp et al., 2015). 12. ASCL1: involved in brain development, neural differentiation(Kim et al., 2011; Krolewski et al., 2012; Liu et al., 2017; Pattyn et al., 2006)and development of serotonergic neurons(Pattyn et al., 2006). 13. PRRT2: Involved in the cell surface expression of glutamate receptor and glutamate signalling (Li et al., 2015), spinogenesis, neuronal migration, synchronous neurotransmitter release and synapse formation and maintenance (Valtorta et al., 2016). Knockout mice showed paroxysmal movements, abnormal motor behaviours and altered synaptic transmission in the cerebellar cortex (Bai et al., 2013). 14. RAI1: Involved in various neurodevelopmental processes. Rai1+/−mice showed abnormal submissive tendencies, increased repetitive behaviours and reduced interest in social odours (Rao et al., 2017), whereas knockout mice showed learning impairment and motor dysfunction (Rao et al., 2017)

Family #7

1. DISC1: DISC1 is proposed to be involved in the release of glutamate (Maher and LoTurco, 2012) and known to impact the NMDAR expression and function (Yan et al., 2014). DISC1 knockout mouse models showed various phenotypes relevant to schizophrenia and other psychiatric disorders (Jaaro-Peled, 2009; Johnstone et al., 2011) 2. AGRN: plays an important role in neuronal responses to excitatory neurotransmitters both in vitro and in vivo (Hilgenberg et al., 2002). Agrin also has an important role in synaptic development, synaptic activity and plasticity (Daniels, 2012) 3. PTPRN: member of the protein tyrosine phosphatase (PTP) family, required for normal accumulation of the neurotransmitters norepinephrine, dopamine and serotonin in the brain. Knockout mice showed various behavioural and cognitive abnormalities (Cai and Notkins, 2016; Carmona et al., 2014; Nishimura et al., 2010, 2009) 4. SLC25A12: encodes a calcium binding mitochondrial protein and it is involved in exchange of aspartate for glutamate across the inner mitochondrial membrane. The gene has been previously implicated in both SZ and autism (Aoki and Cortese, 2016; Hong et al., 2007). Knockout mice showed altered dopamine levels in the brain, hyper-reactivity and anxiety-like behaviour (Llorente-Folch et al., 2013) 5. WNT2: involved in the development of dopaminergic progenitors and dopaminergic neurons. Knockdown of the gene in mouse brains cause depression-like behaviours, impaired Wnt/β-catenin signalling and neurogenesis (Sousa et al., 2010; W. J. Zhou et al., 2016) 6. PTPRD: is a member of the protein tyrosine phosphatase (PTP) family and the gene is involved in hippocampal long-term potentiation and learning processes (Uetani, 2000). Recent GWAS showed that PTPRD is associated with Antipsychotic-induced weight gain (Yu et al., 2016). PTPRD deficient mice showed impairment in cognition and enhanced long-term potentiation (LTP) (Bruining et al., 2015). Structural variation is reported in autism spectrum disorder, dipolar disorder and ADHD (Bruining et al., 2015) 7. PLCB3: encodes a member of the phosphoinositide phospholipase C beta enzyme family. Through the interaction with SHANK2, PLCB3 regulates mGluR-mediated calcium signalling in the brain (Hwang et al., 2005) 8. PCDH9: is a member of the protocadherin family and the gene is involved in various neurodevelopmental processes (Asahina et al., 2012). Knockout mice showed specific long-term social and object recognition deficits (Bruining et al., 2015) 9. DYNC1H1: is a microtubule activated ATPase and acts as a molecular motor. This gene is involved in the modulation of dopamine signalling in striatum (Braunstein et al., 2010) and various neuro developmental processes (Ori-McKenney and Vallee, 2011). 10. TRPV3: is a member of nonselective cation channels and involved in temperature sensation and vasoregulation. Recently its role in modulation of mesolimbic-dopamine signalling has been reported (Singh et al., 2016). 11. PNPO: encodes pyridoxamine 5'-phosphate oxidase, a rate-limiting enzyme in pyridoxal 5'-phosphate (vitamin B(6)) synthesis. Vitamin B6 acts as a co-factor in the synthesis of neurotransmitters such as catecholamine and in homocysteine metabolism. 12. BSG: is a plasma membrane protein. It is an obligatory subunit of native plasma membrane Ca2+-ATPases,is involved in the extrusion Ca2+ ions from the cytosol and is a regulator of Ca2+ signalling. So it is involved in the regulation of intracellular Ca2+ concentration(Kina et al., 2007).Knockout mice showed abnormalities in sensory and memory functions (Naruhashi et al., 1997) Family #8

1. EIF2AK3: Through phosphorylation, it inactivates the alpha subunit of eukaryotic translation-initiation factor 2 and thus causes repression of translational initiation and global protein synthesis. Brain-specific disruption of the gene in mice leads to various behavioural abnormalities including cognitive and information processing deficits, and reduced prepulse inhibition (Trinh et al., 2012) 2. INPP4A: encodes an enzyme which catalyses dephosphorylation of phosphatidylinositol 3,4-bisphosphate, inositol 1,3,4-trisphosphate and inositol 3,4- bisphosphate. It is found in postsynaptic density and involved in the regulation of NMDAR-mediated excitatory postsynaptic current and localization of NMDAR in the synapse (Sasaki et al., 2010). 3. PTPN4: is a member of the protein tyrosine phosphatase (PTP) family and in the brain it interacts with glutamate receptor delta 2 and epsilon subunits(Hironaka et al., 2000). The gene is also involved in phosphorylation and dephosphorylation of glutamate receptors (GluD2, GluA2) and thus long-term depression (Kohda et al., 2013). It is also involved in learning and cerebellar synaptic plasticity (Kina et al., 2007).Knockout mice had shown impaired motor learning and cerebellar long- term depression (Kina et al., 2007). 4. TRAK1: The gene is involved in trafficking of EGF-EGFR complexes and the γ- Aminobutyric acid type A (GABAA) receptor (Brickley et al., 2005; Kina et al., 2007; Webber et al., 2008) 5. EGF: is a member of member of the epidermal growth factor superfamily and it has an important role in dopaminergic precursor cell proliferation, dopaminergic neuron survival and development (O’Keeffe et al., 2009). Transgenic mice overexpressing the gene showed decreases in prepulse inhibition and context-dependent fear learning and higher behavioural sensitivity to the repeated cocaine injections (Eda et al., 2013) 6. MPDZ: The protein is known to interact with serotonin (5-HT2A, HTR2C), gamma aminobutyric acid B receptor 2 (GABA; GABBR2), dopamine (DRD2, DRD3 and DRD4) and NMDA receptors (Parker et al., 2003). The protein has an important role in NMDA-dependent AMPA receptor trafficking cascade (Funk et al., 2009; Karpyak et al., 2012; Krapivinsky et al., 2004; Parker et al., 2003) 7. KIF20B: required for cortical pyramidal neuron morphogenesis and is involved in branching and outgrowth of axon and dendrite, and neuron polarization (Janisch et al., 2013; McNeely et al., 2017). 8. ANK3:is involved in glutamatergic AMPA receptor mediated synaptic transmission, maintenance of spine morphology and MDA receptor-dependent plasticity (Smith et al., 2014). Knockout/heterozygous mice recapitulate a number of features of various human psychiatric disorders including bipolar disorder and schizophrenia(Cordner et al., 2017; van der Werf et al., 2017; Zhu et al., 2017) 9. PRRT2: is involved in neurotransmitter release, synapse formation and brain development (Liu et al., 2016; Valente et al., 2016). PRRT2 interacts with AMPA receptor GRIA1 and has an important role in glutamate signalling, membrane distribution of GRIA1 and glutamate receptor activity (Li et al., 2015). Knockout mice showed paroxysmal movements, abnormal motor behaviours and altered synaptic transmission in the cerebellar cortex (Bai et al., 2013). 10. GRIN3B: is a subunit of a glutamate N-methyl-D-aspartate (NMDA) receptor. Knockout mice showed impairment in motor learning or coordination, changes in home cage activity, social interaction, and increased anxiety-like behaviour (Kina et al., 2007) 11. TBX1: encodes a transcription factor.The gene lies within the 22q11.2 region and is a SZ and DiGeorge syndrome linked locus. Tbx1 haploinsufficiency in mice caused reduced prepulse inhibition (PPI) (Paylor et al., 2006) and another study showed that the congenic Tbx1 heterozygous mice displayed various Autism related phenotypes (Hiramoto et al., 2011). This gene is known to be involved in various neurodevelopmental processes and functions of neuronal circuits (Cioffi et al., 2014; Flore et al., 2016) Family #9 1. SCN2A: is a voltage-gated sodium channel involved in the generation and propagation of action potentials in excitable cells. This gene is already implicated in various neuropsychiatric disorders including SZ (Carroll et al., 2016). Scn2aKO/+ mice showed a range of behavioural and neurological phenotype observed in various rodent models of schizophrenia and autism spectrum disorder (Trinh et al., 2012). 2. KALRN: has an important role in synaptic structure and function as well as cognitive functions (Ma et al., 2008). KALRN is known to interact with the NR2B subunit of the NMDA receptor and the interactions are essential for normal synaptic plasticity (Kiraly et al., 2011). It has an important role in AMPA receptor uptake regulation during LTP (Herring and Nicoll, 2016). Knockout mice showed various behavioural abnormalities (Cahill et al., 2009; LaRese et al., 2017; Mandela and Ma, 2012; Xie et al., 2011) 3. CLSTN2: is a neuronal cell surface synaptic protein involved in learning and memory. The knockout mice showed high exploration and hyperactivity, stereotyped behaviour, reduced social behaviour and deficits in spatial learning and memory. The knockout mice showed a deficit of GABAergic interneurons and aberrant inhibitory transmission (Lipina et al., 2016; Ranneva et al., 2017). 4. DRD3: is a D3 subtype of the five dopamine receptors and is a well known SZ candidate gene (Nunokawa et al., 2010; Utsunomiya et al., 2008).

5. PDGFRB: is a cell surface tyrosine kinase receptor. This gene is involved in inhibition of excitatory transmission and NMDA receptor function (Lei et al., 1999; Valenzuela et al., 1996). PDGFRβ is known to be transactivated by dopamine receptor D4 and this transactivation is independent of PDGF ligand, PDGFRβ cross-phosphorylation and dimerization (Chi et al., 2010).Knockout mice showed behavioral and neuroanatomical features associated with various psychiatric disorders especially negative symptoms of schizophrenia, socio-emotional disturbances of autism and reduced number of parvalbumin-positive interneurons(Bai et al., 2013).

6. GPR151: is a member of a rhodopsin-like family of G-protein-coupled receptors (GPCRs) and is mainly expressed in habenular axonal projections. It is considered a novel drug target for various neuropsychiatric disorders (Broms et al., 2015).

7. GTF2IRD1: knockout mice have shown enhanced prefrontal serotonin 5-HT1A mediated responses and various behavioural abnormalities (Proulx et al., 2010).

8. KCNT1: is a voltage-gated ion channel, activated by elevations in intracellular sodium. It is known to interact and localise with PSD-95 (DLG4) (Uchino et al., 2003). It negatively regulates AMPA receptor mediated current, and the amplitude of synaptic potential (Nanou et al., 2008). 9. LAMA1: encodes one of the alpha 1 subunits of laminin and is involved in cell adhesion, migration, neurite outgrowth and angiogenesis. It has an important role in cerebellum development. Knockout mice showed behavioural abnormalities and impaired formation of the cerebellum (Heng et al., 2011; Ichikawa-Tomikawa et al., 2012) 10. LMTK3: is a member of the LMTK family of protein kinases and it is involved in endocytic trafficking of N-methyl-d-aspartate receptors. Lmtk3−/− mice showed reduced anxiety and depression-like behaviour, and pronounced locomotor hyperactivity. In the striatum of the knock out mice, dopamine metabolite levels and dopamine turnover rates increased (Inoue et al., 2014). 11. L3MBTL1: is a polycomb group gene, and the gene product is involved in chromatin modification. Knock out mice showed significant reduction in depression and and anxiety like behaviours (Shen et al., 2015). . Family #10 1. PLXNA2: is a member of the plexin-A family of semaphorin co-receptors and has a role in axon guidance, invasive growth and cell migration. Plxna2−/− mice showed malformed dentate gyrus and SZ like behaviours (Zhao et al., 2018).

2. GRM7: is a member of the metabotropic class of glutamate receptors.

3. GRM2:is a member of the metabotropic class of glutamate receptors. Through positive allosteric modulation of mGluR2 in translational models of cognitive symptoms associated with schizophrenia, showed improvement in memory and attention deficits (Yu et al., 2013) 4. PLD1: encodes phosphatidylcholine-specific phospholipase and catalyses the hydrolysis of phosphatidylcholine to phosphatidic acid and choline. In the brain, it is involved in BDNF induced signalling (Ammar et al., 2015), which in turn is involved in glutamatergic and GABAergic synapse formation, maturation and plasticity (Gottmann et al., 2009). Knockout mice displayed impaired brain development and reduced cognitive function (Zoubovsky et al., 2015). 5. PCM1: is a DISC1 interacting protein, implicated in centrosome assembly and function, implicated in SZ (Moens et al., 2010). Haploinsufficient for PCM1 (Pcm1+/−) mice showed reduced whole brain volume and impairment in social interaction (Zoubovsky et al., 2015). 6. NRP1: is a semaphorin receptor, involved in neuronal migration and patterning (Fantin et al., 2009). During the construction of GABAergic circuitry, NRP1 is involved in axon guidance and subcellular target recognition (Telley et al., 2016). 7. NEURL1: Through the modulation of CPEB3 levels and CPEB3-dependent synthesis of GluR1 and GluR2, NEURL1 is involved in hippocampal plasticity and hippocampal- dependent memory (Yu et al., 2013). In addition, it also affects the growth of new dendritic spines and increases the expression of GluA1 and GluA2 subunits of AMPA receptors. Inhibition of the gene impairs hippocampal-dependent memory and synaptic plasticity, and reduces GluA1 and GluA2 levels (Pavlopoulos et al., 2011). 8. TH: is a rate limiting enzyme in the biosynthesis of catecholamine, like dopamine and noradrenaline. 9. IQSEC3: is a member of the brefeldin A-resistant Arf-GEF/IQSEC family. Through interaction with gephyrin IQSEC3, promotes the formation of inhibitory synapses (Fukaya et al., 2011; Um et al., 2016). 10. THBS1: is a glycoprotein and is involved in cell-to-matrix and cell-to-cell interactions and in the regulation of excitatory synaptogenesis through the gabapentin receptor α2δ- 1(Crawford et al., 2012; Eroglu et al., 2009) and neuroligin 1 (NRG1)(Xu et al., 2010). 11. LAMA1: encodes one of the alpha 1 subunits of laminin and is involved in cell adhesion, migration, neurite outgrowth and angiogenesis. It has an important role in cerebellum development. Knockout mice showed behavioural abnormalities and impaired formation of the cerebellum (Heng et al., 2011; Ichikawa-Tomikawa et al., 2012) 12. EFNA2: in the developing neocortex, it is involved in interneuron migration and excitatory neuron differentiation (Homman-Ludiye et al., 2017). It is also involved in the modulation of experience-dependent, NMDA receptor-mediated, synaptic pruning during maturation of the mouse cortex (Yu et al., 2013). 13. PTPRT: is a member of the protein tyrosine phosphatase (PTP) family. Through interaction with cell adhesion molecules and Fyn protein tyrosine kinase, PTPRT regulates synapse formation in CNS (Lim et al., 2009). (Please rewrite the next two sentences. They don’t make sense as is.)Through interactions between the Syntaxin- binding protein, the Syntaxin protein known to regulate neurotransmitter release and the protein also known to be involved in various neurodevelopmental process by dephosphorylating synaptic molecules and its interaction with neuronal adhesion molecules (Lee, 2015). 14. SHANK3: is a multidomain scaffold postsynaptic density protein of excitatory synapses. It is involved in NMDA receptor signalling (Duffney et al., 2013), regulation of Metabotropic Glutamate Receptor 5 expression (Duffney et al., 2013) and AMPA Receptor Recycling and Synaptic LTP (Raynaud et al., 2013). SHANK3 knockout mice showed autistic-like behaviours, striatal dysfunction, spatial memory deficit and abnormal social interaction (Jaramillo et al., 2016; Lee et al., 2015; Peça et al., 2011) 15. PLXNA3: is a class 3 semaphorin receptor involved in the development of hippocampal axonal projections (Pavlopoulos et al., 2011)

Family #11 1. ANK2: is a member of the Ankyrin protein family and connects integral membrane proteins to underlying spectrin-actin cytoskeleton. The gene has an important role in synaptic stability (Koch et al., 2008). 2. KMT2E: involved in promoter related histone acetylation and H3K4 tri- and di- methylation 3. FGF23: is a member of the fibroblast growth factor family of proteins. In the hippocampal neurons, it induces phospholipase Cγ activity, inhibits neuronal ramification and enhances the synaptic density. It may also be involved in memory formation (Hensel et al., 2016). 4. GRIN3B: is a subunit of a glutamate N-methyl-D-aspartate (NMDA) receptor. Knockout mice showed impairment in motor learning or coordination, changes in home cage activity, social interaction, and increased anxiety-like behaviour (Kina et al., 2007) 5. ARR3: encodes a non-visual arrestin, which binds to agonist-activated, phosphorylated G protein-coupled receptors. This dissociates receptors from the heterotrimeric G protein and thus terminates the signalling process. ARR3 is involved in D2 dopamine receptor internalisation (Skinbjerg et al., 2009).

References Abbasi-Moheb, L., Mertel, S., Gonsior, M., Nouri-Vahid, L., Kahrizi, K., Cirak, S., Wieczorek, D., Motazacker, M.M., Esmaeeli-Nieh, S., Cremer, K., Weißmann, R., Tzschach, A., Garshasbi, M., Abedini, S.S., Najmabadi, H., Ropers, H.H., Sigrist, S.J., Kuss, A.W., 2012. Mutations in NSUN2 cause autosomal- Recessive intellectual disability. Am. J. Hum. Genet. 90, 847–855. https://doi.org/10.1016/j.ajhg.2012.03.021 Amaniti, E.M., Hasenpusch-Theil, K., Li, Z., Magnani, D., Kessaris, N., Mason, J.O., Theil, T., 2013. Gli3 is required in Emx1+ progenitors for the development of the corpus callosum. Dev. Biol. 376, 113–124. https://doi.org/10.1016/j.ydbio.2013.02.001 Ammar, M.R., Thahouly, T., Hanauer, A., Stegner, D., Nieswandt, B., Vitale, N., 2015. PLD1 participates in BDNF-induced signalling in cortical neurons. Sci. Rep. 5, 14778. https://doi.org/10.1038/srep14778 Andjus, P.R., Bajić, A., Zhu, L., Schachner, M., Strata, P., 2005. Short-term facilitation and depression in the cerebellum: Some observations on wild-type and mutant rodents deficient in the extracellular matrix molecule tenascin C, in: Annals of the New York Academy of Sciences. pp. 185–197. https://doi.org/10.1196/annals.1342.017 Aoki, Y., Cortese, S., 2016. Mitochondrial Aspartate/Glutamate Carrier SLC25A12 and Autism Spectrum Disorder: a Meta-Analysis. Mol. Neurobiol. 53, 1579–1588. https://doi.org/10.1007/s12035-015-9116-3 Asahina, H., Masuba, A., Hirano, S., Yuri, K., 2012. Distribution of protocadherin 9 protein in the developing mouse nervous system. Neuroscience 225, 88–104. https://doi.org/10.1016/j.neuroscience.2012.09.006 Auderset, L., Landowski, L.M., Foa, L., Young, K.M., 2016. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int. https://doi.org/10.1155/2016/2108495 Bai, N., Hayashi, H., Aida, T., Namekata, K., Harada, T., Mishina, M., Tanaka, K., 2013. Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity. Mol. Brain 6, 22. https://doi.org/10.1186/1756-6606-6-22 Basson, C.T., Huang, T., Lin, R.C., Bachinsky, D.R., Weremowicz, S., Vaglio, A., Bruzzone, R., Quadrelli, R., Lerone, M., Romeo, G., Silengo, M., Pereira, A., Krieger, J., Mesquita, S.F., Kamisago, M., Morton, C.C., Pierpont, M.E.M., Muller, C.W., Seidman, J.G., Seidman, C.E., 1999. Different TBX5 interactions in heart and limb defined by Holt- Oram syndrome mutations. Proc. Natl. Acad. Sci. 96, 2919–2924. https://doi.org/10.1073/pnas.96.6.2919 Bender, H.-U., Almashanu, S., Steel, G., Hu, C.-A., Lin, W.-W., Willis, A., Pulver, A., Valle, D., 2005. Functional Consequences of PRODH Missense Mutations. Am. J. Hum. Genet. 76, 409–420. https://doi.org/10.1086/428142 Blasius, A.L., Dubin, A.E., Petrus, M.J., Lim, B.-K., Narezkina, A., Criado, J.R., Wills, D.N., Xia, Y., Moresco, E.M.Y., Ehlers, C., Knowlton, K.U., Patapoutian, A., Beutler, B., 2011. Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc. Natl. Acad. Sci. 108, 19413–19418. https://doi.org/10.1073/pnas.1117020108 Blum, R., Kafitz, K.W., Konnerth, A., 2002. Neurotrophin-evoked depolarization requires the sodium channel Nav1.9. Nature. https://doi.org/10.1038/nature01085 Brady, A.E., Jones, C.K., Bridges, T.M., Kennedy, J.P., Thompson, A.D., Heiman, J.U., Breininger, M.L., Gentry, P.R., Yin, H., Jadhav, S.B., Shirey, J.K., Conn, P.J., Lindsley, C.W., 2008. Centrally Active Allosteric Potentiators of the M4 Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Rats. J. Pharmacol. Exp. Ther. 327, 941–953. https://doi.org/10.1124/jpet.108.140350 Braunstein, K.E., Eschbach, J., Ròna-Vörös, K., Soylu, R., Mikrouli, E., Larmet, Y., René, F., de Aguilar, J.L.G., Loeffler, J.P., Müller, H.P., Bucher, S., Kaulisch, T., Niessen, H.G., Tillmanns, J., Fischer, K., Schwalenstöcker, B., Kassubek, J., Pichler, B., Stiller, D., Petersen, Å., Ludolph, A.C., Dupuis, L., 2010. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum. Mol. Genet. 19, 4385–4398. https://doi.org/10.1093/hmg/ddq361 Breustedt, J., Gundlfinger, A., Varoqueaux, F., Reim, K., Brose, N., Schmitz, D., 2010. Munc13-2 differentially affects hippocampal synaptic transmission and plasticity. Cereb. Cortex 20, 1109–1120. https://doi.org/10.1093/cercor/bhp170 Brickley, K., Smith, M.J., Beck, M., Stephenson, F.A., 2005. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: Association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723–14732. https://doi.org/10.1074/jbc.M409095200 Broms, J., Antolin-Fontes, B., Tingström, A., Ibañez-Tallon, I., 2015. Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J. Comp. Neurol. 523, 359–380. https://doi.org/10.1002/cne.23664 Bruining, H., Matsui, A., Oguro-Ando, A., Kahn, R.S., Van’T Spijker, H.M., Akkermans, G., Stiedl, O., Van Engeland, H., Koopmans, B., Van Lith, H.A., Oppelaar, H., Tieland, L., Nonkes, L.J., Yagi, T., Kaneko, R., Burbach, J.P.H., Yamamoto, N., Kas, M.J., 2015. Genetic mapping in mice reveals the involvement of Pcdh9 in long-term social and object recognition and sensorimotor development. Biol. Psychiatry 78, 485–495. https://doi.org/10.1016/j.biopsych.2015.01.017 Butz, S., Okamoto, M., Südhof, T.C., 1998. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782. https://doi.org/10.1016/S0092-8674(00)81736-5 Cahill, M.E., Xie, Z., Day, M., Photowala, H., Barbolina, M. V, Miller, C.A., Weiss, C., Radulovic, J., Sweatt, J.D., Disterhoft, J.F., Surmeier, D.J., Penzes, P., 2009. Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc. Natl. Acad. Sci. 106, 13058–13063. https://doi.org/10.1073/pnas.0904636106 Cai, C., Li, H., Rivera, C., Keinänen, K., 2006. Interaction between SAP97 and PSD-95, two Maguk proteins involved in synaptic trafficking of AMPA receptors. J. Biol. Chem. 281, 4267–4273. https://doi.org/10.1074/jbc.M505886200 Cai, T., Notkins, A.L., 2016. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Acta Diabetol. 53, 7–12. https://doi.org/10.1007/s00592-015-0750-z Campo, G.C., Sinagra, M., Verrier, D., Manzoni, O.J., Chavis, P., 2009. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PLoS One 4, e5505. https://doi.org/10.1371/journal.pone.0005505 Carlisle, H.J., Luong, T.N., Medina-Marino, A., Schenker, L., Khorosheva, E., Indersmitten, T., Gunapala, K.M., Steele, A.D., O’Dell, T.J., Patterson, P.H., Kennedy, M.B., 2011. Deletion of Densin-180 Results in Abnormal Behaviors Associated with Mental Illness and Reduces mGluR5 and DISC1 in the Postsynaptic Density Fraction. J. Neurosci. 31, 16194–16207. https://doi.org/10.1523/JNEUROSCI.5877-10.2011 Carmona, G.N., Nishimura, T., Schindler, C.W., Panlilio, L. V, Notkins, A.L., 2014. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning. Neuroscience 269, 35–42. https://doi.org/10.1016/j.neuroscience.2014.03.023 Carroll, L.S., Woolf, R., Ibrahim, Y., Williams, H.J., Dwyer, S., Walters, J., Kirov, G., O’Donovan, M.C., Owen, M.J., 2016. Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatr. Genet. 26, 60–65. https://doi.org/10.1097/YPG.0000000000000110 Ceglia, I., Lee, K.-W., Cahill, M.E., Graves, S.M., Dietz, D., Surmeier, D.J., Nestler, E.J., Nairn, A.C., Greengard, P., Kim, Y., 2017. WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proc. Natl. Acad. Sci. 114, 1395–1400. https://doi.org/10.1073/pnas.1621185114 Chen, Y., 2005. Reelin Modulates NMDA Receptor Activity in Cortical Neurons. J. Neurosci. 25, 8209–8216. https://doi.org/10.1523/JNEUROSCI.1951-05.2005 Chen, Z., Cooper, B., Kalla, S., Varoqueaux, F., Young, S.M., 2013. The Munc13 Proteins Differentially Regulate Readily Releasable Pool Dynamics and Calcium-Dependent Recovery at a Central Synapse. J. Neurosci. 33, 8336–8351. https://doi.org/10.1523/JNEUROSCI.5128-12.2013 Chi, S.S., Vetiska, S.M., Gill, R.S., Hsiung, M.S., Liu, F., Van Tol, H.H., 2010. Transactivation of PDGFRbeta by dopamine D4 receptor does not require PDGFRbeta dimerization. Mol. Brain 3, 22. https://doi.org/10.1186/1756-6606-3-22 Cioffi, S., Martucciello, S., Fulcoli, F.G., Bilio, M., Ferrentino, R., Nusco, E., Illingworth, E., 2014. Tbx1 regulates brain vascularization. Hum. Mol. Genet. 23, 78–89. https://doi.org/10.1093/hmg/ddt400 Coba, M.P., Ramaker, M.J., Ho, E. V., Thompson, S.L., Komiyama, N.H., Grant, S.G.N., Knowles, J.A., Dulawa, S.C., 2018. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci. Rep. 8, 2281. https://doi.org/10.1038/s41598-018-20610-y Cohen, S.M., Nadler, J.V., 1997. Proline-induced potentiation of glutamate transmission. Brain Res. 761, 271–282. https://doi.org/10.1016/S0006-8993(97)00352-1 Cordner, Z., Zhu, S., Tamashiro, K., Ross, C., 2017. Conditional Knockout of Ankyrin-G In The Mouse Forebrain Results In Bipolar-Like Behavior. Eur. Neuropsychopharmacol. 27, S485. https://doi.org/10.1016/J.EURONEURO.2016.09.574 Crabtree, G.W., Park, A.J., Gordon, J.A., Gogos, J.A., 2016. Cytosolic Accumulation of L- Proline Disrupts GABA-Ergic Transmission through GAD Blockade. Cell Rep. 17, 570– 582. https://doi.org/10.1016/j.celrep.2016.09.029 Crawford, D.C., Jiang, X., Taylor, A., Mennerick, S., 2012. Astrocyte-Derived Thrombospondins Mediate the Development of Hippocampal Presynaptic Plasticity In Vitro. J. Neurosci. 32, 13100–13110. https://doi.org/10.1523/JNEUROSCI.2604- 12.2012 Daniels, M.P., 2012. The role of agrin in synaptic development, plasticity and signaling in the central nervous system, in: Neurochemistry International. NIH Public Access, pp. 848– 853. https://doi.org/10.1016/j.neuint.2012.02.028 de Arce, K.P., Varela-Nallar, L., Farias, O., Cifuentes, A., Bull, P., Couch, B.A., Koleske, A.J., Inestrosa, N.C., Alvarez, A.R., 2010. Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation. J. Neurosci. 30, 3728–3738. https://doi.org/10.1523/JNEUROSCI.2024-09.2010 de Wit, J., Sylwestrak, E., O’Sullivan, M.L., Otto, S., Tiglio, K., Savas, J.N., Yates, J.R., Comoletti, D., Taylor, P., Ghosh, A., 2009. LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation. Neuron 64, 799–806. https://doi.org/10.1016/j.neuron.2009.12.019 Deng, F., Price, M.G., Davis, C.F., Mori, M., Burgess, D.L., 2006. Stargazin and Other Transmembrane AMPA Receptor Regulating Proteins Interact with Synaptic Scaffolding Protein MAGI-2 in Brain. J. Neurosci. 26, 7875–7884. https://doi.org/10.1523/JNEUROSCI.1851-06.2006 Diering, G.H., Gustina, A.S., Huganir, R.L., 2014. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 84, 790–805. https://doi.org/10.1016/j.neuron.2014.09.024 Dityatev, A., Brückner, G., Dityateva, G., Grosche, J., Kleene, R., Schachner, M., 2007. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev. Neurobiol. 67, 570–588. https://doi.org/10.1002/dneu.20361 Dreses-Werringloer, U., Vingtdeux, V., Zhao, H., Chandakkar, P., Davies, P., Marambaud, P., 2013. CALHM1 controls the Ca2+-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J. Cell Sci. 126, 1199–1206. https://doi.org/10.1242/jcs.117135 Driver, A., Shumrick, C., Stottmann, R., 2017. Ttc21b Is Required in Bergmann Glia for Proper Granule Cell Radial Migration. J. Dev. Biol. 5, 18. https://doi.org/10.3390/jdb5040018 Duffney, L.J., Wei, J., Cheng, J., Liu, W., Smith, K.R., Kittler, J.T., Yan, Z., 2013. Shank3 Deficiency Induces NMDA Receptor Hypofunction via an Actin-Dependent Mechanism. J. Neurosci. 33, 15767–15778. https://doi.org/10.1523/JNEUROSCI.1175- 13.2013 Eagleson, K.L., Campbell, D.B., Thompson, B.L., Bergman, M.Y., Levitt, P., 2011. The autism risk genes MET and PLAUR differentially impact cortical development. Autism Res. 4, 68–83. https://doi.org/10.1002/aur.172 Eagleson, K.L., Gravielle, M.C., Schlueter McFadyen-Ketchum, L.J., Russek, S.J., Farb, D.H., Levitt, P., 2010. Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAAreceptor subunit changes. Neuroscience 168, 797–810. https://doi.org/10.1016/j.neuroscience.2010.03.066 Eda, T., Mizuno, M., Araki, K., Iwakura, Y., Namba, H., Sotoyama, H., Kakita, A., Takahashi, H., Satoh, H., Chan, S.-Y., Nawa, H., 2013. Neurobehavioral deficits of epidermal growth factor-overexpressing transgenic mice: Impact on dopamine metabolism. Neurosci. Lett. 547, 21–25. https://doi.org/10.1016/j.neulet.2013.04.055 Enz, R., 2002. The actin-binding protein Filamin-A interacts with the metabotropic glutamate receptor type 7. FEBS Lett. 514, 184–188. https://doi.org/10.1016/S0014- 5793(02)02361-X Eroglu, Ç., Allen, N.J., Susman, M.W., O’Rourke, N.A., Park, C.Y., Özkan, E., Chakraborty, C., Mulinyawe, S.B., Annis, D.S., Huberman, A.D., Green, E.M., Lawler, J., Dolmetsch, R., Garcia, K.C., Smith, S.J., Luo, Z.D., Rosenthal, A., Mosher, D.F., Barres, B.A., 2009. Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. Cell 139, 380–392. https://doi.org/10.1016/j.cell.2009.09.025 Evers, M.R., Salmen, B., Bukalo, O., Rollenhagen, A., Bösl, M.R., Morellini, F., Bartsch, U., Dityatev, A., Schachner, M., 2002. Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J. Neurosci. 22, 7177–7194. https://doi.org/20026735 Fantin, A., Maden, C.H., Ruhrberg, C., 2009. Neuropilin ligands in vascular and neuronal patterning. Biochem. Soc. Trans. 37, 1228–1232. https://doi.org/10.1042/BST0371228 Feifel, D., Shilling, P.D., Kuczenski, R., Segal, D.S., 2003. Altered extracellular dopamine concentration in the brains of cholecystokinin-A receptor deficient rats. Neurosci. Lett. 348, 147–150. https://doi.org/10.1016/S0304-3940(03)00767-5 Feng, J., Xu, Y., Wang, M., Ruan, Y., So, K.-F., Tissir, F., Goffinet, A., Zhou, L., 2012. A Role for Atypical Cadherin Celsr3 in Hippocampal Maturation and Connectivity. J. Neurosci. 32, 13729–13743. https://doi.org/10.1523/JNEUROSCI.1965-12.2012 Fisher, C.E., Howie, S.E.M., 2006. The role of megalin (LRP-2/Gp330) during development. Dev. Biol. https://doi.org/10.1016/j.ydbio.2006.06.007 Flore, G., Cioffi, S., Bilio, M., Illingworth, E., 2016. Cortical Development Requires Mesodermal Expression of Tbx1 , a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb. Cortex 27, bhw076. https://doi.org/10.1093/cercor/bhw076 Flores, C., 2011. Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. J. Psychiatry Neurosci. https://doi.org/10.1503/jpn.100171 Fourie, C., Li, D., Montgomery, J.M., 2014. The anchoring protein SAP97 influences the trafficking and localisation of multiple membrane channels. Biochim. Biophys. Acta - Biomembr. 1838, 589–594. https://doi.org/10.1016/j.bbamem.2013.03.015 Fukamauchi, F., Mataga, N., Wang, Y.J., Sato, S., Yoshiki, A., Kusakabe, M., 1996. Abnormal behavior and neurotransmissions of tenascin gene knockout mouse. Biochem. Biophys. Res. Commun. 221, 151–156. https://doi.org/10.1006/bbrc.1996.0561 Fukaya, M., Kamata, A., Hara, Y., Tamaki, H., Katsumata, O., Ito, N., Takeda, S., Hata, Y., Suzuki, T., Watanabe, M., Harvey, R.J., Sakagami, H., 2011. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J. Neurochem. 116, 1122–1137. https://doi.org/10.1111/j.1471-4159.2010.07167.x Funk, A.J., Rumbaugh, G., Harotunian, V., McCullumsmith, R.E., Meador-Woodruff, J.H., 2009. Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport 20, 1019–1022. https://doi.org/10.1097/WNR.0b013e32832d30d9 Gerke, P., Benzing, T., Höhne, M., Kispert, A., Frotscher, M., Walz, G., Kretz, O., 2006. Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. J. Comp. Neurol. 498, 466–475. https://doi.org/10.1002/cne.21064 Ghosh, M., Lane, M., Krizman, E., Sattler, R., Rothstein, J.D., Robinson, M.B., 2016. The transcription factor Pax6 contributes to the induction of GLT-1 expression in astrocytes through an interaction with a distal enhancer element. J. Neurochem. 136, 262–275. https://doi.org/10.1111/jnc.13406 Gogos, J.A., Santha, M., Takacs, Z., Beck, K.D., Luine, V., Lucas, L.R., Nadler, J.V., Karayiorgou, M., 1999. The gene encoding proline modulates sensorimotor gating in mice. Nat. Genet. 21, 434–439. https://doi.org/10.1038/7777 Gomes, J.R., Nogueira, R.S., Vieira, M., Santos, S.D., Ferraz-Nogueira, J.P., Relvas, J.B., Saraiva, M.J., 2016. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ. 23, 1749–1764. https://doi.org/10.1038/cdd.2016.64 Gomez, A.M., Froemke, R.C., Burden, S.J., 2014. Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4. Elife 3, 1–16. https://doi.org/10.7554/eLife.04287 Goto, A., Hoshino, M., Matsuda, M., Nakamura, T., 2011. Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP-treated PC12D cells. Mol. Biol. Cell 22, 1780–1790. https://doi.org/10.1091/mbc.E10-09-0783 Gottmann, K., Mittmann, T., Lessmann, V., 2009. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res. https://doi.org/10.1007/s00221-009-1994-z Haddad-TÃ3volli, R., Paul, F.A., Zhang, Y., Zhou, X., Theil, T., Puelles, L., Blaess, S., Alvarez-Bolado, G., 2015. Corrigendum: Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front. Neuroanat. 9, 34. https://doi.org/10.3389/fnana.2015.00058 Hagan, N., Guarente, J., Ellisor, D., Zervas, M., 2017. The Temporal Contribution of the Gbx2 Lineage to Cerebellar Neurons. Front. Neuroanat. 11. https://doi.org/10.3389/fnana.2017.00050 Heng, C., Lefebvre, O., Klein, A., Edwards, M.M., Simon-Assmann, P., Orend, G., Bagnard, D., 2011. Functional role of laminin α1 chain during cerebellum development. Cell Adhes. Migr. 5, 480–489. https://doi.org/10.4161/cam.5.6.19191 Hensel, N., Schön, A., Konen, T., Lübben, V., Förthmann, B., Baron, O., Grothe, C., Leifheit-Nestler, M., Claus, P., Haffner, D., 2016. Fibroblast growth factor 23 signaling in hippocampal cells: Impact on neuronal morphology and synaptic density. J. Neurochem. 137, 756–769. https://doi.org/10.1111/jnc.13585 Herring, B.E., Nicoll, R.A., 2016. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc. Natl. Acad. Sci. 113, 2264–2269. https://doi.org/10.1073/pnas.1600179113 Hilgenberg, L.G.W., Ho, K.D., Lee, D., O’Dowd, D.K., Smith, M.A., 2002. Agrin regulates neuronal responses to excitatory neurotransmitters in vitro and in vivo. Mol. Cell. Neurosci. 19, 97–110. https://doi.org/10.1006/mcne.2001.1056 Hiramoto, T., Kang, G., Suzuki, G., Satoh, Y., Kucherlapati, R., Watanabe, Y., Hiroi, N., 2011. Tbx1: Identification of a 22q11.2 gene as a risk factor for autism spectrum disorder in a mouse model. Hum. Mol. Genet. 20, 4775–4785. https://doi.org/10.1093/hmg/ddr404 Hironaka, K., Umemori, H., Tezuka, T., Mishina, M., Yamamoto, T., 2000. The protein- tyrosine phosphatase PTPMEG interacts with glutamate receptor δ2 and ε subunits. J. Biol. Chem. 275, 16167–16173. https://doi.org/10.1074/jbc.M909302199 Homman-Ludiye, J., Kwan, W.C., De Souza, M.J., Rodger, J., Bourne, J.A., 2017. Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Sci. Rep. 7, 11813. https://doi.org/10.1038/s41598-017-12185-x Hong, C.J., Liou, Y.J., Liao, D.L., Hou, S.J., Yen, F.C., Tsai, S.J., 2007. Association study of polymorphisms in the mitochondrial aspartate/glutamate carrier SLC25A12 (aralar) gene with schizophrenia. Prog. Neuro-Psychopharmacology Biol. Psychiatry 31, 1510–1513. https://doi.org/10.1016/j.pnpbp.2007.07.010 Hong, X., Avetisyan, M., Ronilo, M., Standley, S., 2015. SAP97 blocks the RXR ER retention signal of NMDA receptor subunit GluN1-3 through its SH3 domain. Biochim. Biophys. Acta - Mol. Cell Res. 1853, 489–499. https://doi.org/10.1016/j.bbamcr.2014.11.030 Hussain, N.K., Hsin, H., Huganir, R.L., Sheng, M., 2010. MINK and TNIK Differentially Act on Rap2-Mediated Signal Transduction to Regulate Neuronal Structure and AMPA Receptor Function. J. Neurosci. 30, 14786–14794. https://doi.org/10.1523/JNEUROSCI.4124-10.2010 Hwang, J.I., Hyeon, S.K., Jae, R.L., Kim, E., Sung, H.R., Suh, P.G., 2005. The interaction of phospholipase C-β3 with Shank2 regulates mGluR-mediated calcium signal. J. Biol. Chem. 280, 12467–12473. https://doi.org/10.1074/jbc.M410740200 Ichikawa-Tomikawa, N., Ogawa, J., Douet, V., Xu, Z., Kamikubo, Y., Sakurai, T., Kohsaka, S., Chiba, H., Hattori, N., Yamada, Y., Arikawa-Hirasawa, E., 2012. Laminin α1 is essential for mouse cerebellar development. Matrix Biol. 31, 17–28. https://doi.org/10.1016/j.matbio.2011.09.002 Inoue, T., Hoshina, N., Nakazawa, T., Kiyama, Y., Kobayashi, S., Abe, T., Yamamoto, T., Manabe, T., Yamamoto, T., 2014. LMTK3 Deficiency Causes Pronounced Locomotor Hyperactivity and Impairs Endocytic Trafficking. J. Neurosci. 34, 5927–5937. https://doi.org/10.1523/JNEUROSCI.1621-13.2014 Ito, H., Shiwaku, H., Yoshida, C., Homma, H., Luo, H., Chen, X., Fujita, K., Musante, L., Fischer, U., Frints, S.G.M., Romano, C., Ikeuchi, Y., Shimamura, T., Imoto, S., Miyano, S., Muramatsu, S.I., Kawauchi, T., Hoshino, M., Sudol, M., Arumughan, A., Wanker, E.E., Rich, T., Schwartz, C., Matsuzaki, F., Bonni, A., Kalscheuer, V.M., Okazawa, H., 2015. In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells. Mol. Psychiatry 20, 459–471. https://doi.org/10.1038/mp.2014.69 Ito, H., Yoshimura, N., Kurosawa, M., Ishii, S., Nukina, N., Okazawa, H., 2009. Knock-down of PQBP1 impairs anxiety-related cognition in mouse. Hum. Mol. Genet. 18, 4239– 4254. https://doi.org/10.1093/hmg/ddp378 Jaaro-Peled, H., 2009. Gene models of schizophrenia: DISC1 mouse models. Prog. Brain Res. 179, 75–86. https://doi.org/10.1016/S0079-6123(09)17909-8 Jacquet, H., Raux, G., Thibaut, F., Hecketsweiler, B., Houy, E., Demilly, C., Haouzir, S., Allio, G., Fouldrin, G., Drouin, V., Bou, J., Petit, M., Campion, D., Frébourg, T., 2002. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients, Human Molecular Genetics. https://doi.org/10.1093/HMG/11.19.2243 Jahn, R., Fasshauer, D., 2012. Molecular machines governing exocytosis of synaptic vesicles. Nature. https://doi.org/10.1038/nature11320 Janisch, K.M., Vock, V.M., Fleming, M.S., Shrestha, A., Grimsley-Myers, C.M., Rasoul, B.A., Neale, S.A., Cupp, T.D., Kinchen, J.M., Liem, K.F., Dwyer, N.D., 2013. The vertebrate-specific Kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells and cerebral cortex size. Development 140, 4672–4682. https://doi.org/10.1242/dev.093286 Jaramillo, T.C., Speed, H.E., Xuan, Z., Reimers, J.M., Liu, S., Powell, C.M., 2016. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism. Autism Res. 9, 350–375. https://doi.org/10.1002/aur.1529 Jensen, L.R., Chen, W., Moser, B., Lipkowitz, B., Schroeder, C., Musante, L., Tzschach, A., Kalscheuer, V.M., Meloni, I., Raynaud, M., van Esch, H., Chelly, J., de Brouwer, A.P.M., Hackett, A., van der Haar, S., Henn, W., Gecz, J., Riess, O., Bonin, M., Reinhardt, R., Ropers, H.-H., Kuss, A.W., 2011. Hybridisation-based resequencing of 17 X-linked intellectual disability genes in 135 patients reveals novel mutations in ATRX, SLC6A8 and PQBP1. Eur. J. Hum. Genet. 19, 717–720. https://doi.org/10.1038/ejhg.2010.244 Ji, X., Takahashi, N., Saito, S., Ishihara, R., Maeno, N., Inada, T., Ozaki, N., 2008. Relationship between three serotonin receptor subtypes (HTR3A, HTR2A and HTR4) and treatment-resistant schizophrenia in the Japanese population. Neurosci. Lett. 435, 95–98. https://doi.org/10.1016/j.neulet.2008.01.083 Jia, Z., Guo, Y., Tang, Y., Xu, Q., Li, B., Wu, Q., 2014. Regulation of the Protocadherin Celsr3 Gene and Its Role in Globus Pallidus Development and Connectivity. Mol. Cell. Biol. 34, 3895–3910. https://doi.org/10.1128/MCB.00760-14 Jiang, Y., Loh, Y.H.E., Rajarajan, P., Hirayama, T., Liao, W., Kassim, B.S., Javidfar, B., Hartley, B.J., Kleofas, L., Park, R.B., Labonte, B., Ho, S.M., Chandrasekaran, S., Do, C., Ramirez, B.R., Peter, C.J., Julia, T.C.W., Safaie, B.M., Morishita, H., Roussos, P., Nestler, E.J., Schaefer, A., Tycko, B., Brennand, K.J., Yagi, T., Shen, L., Akbarian, S., 2017. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat. Genet. 49, 1239–1250. https://doi.org/10.1038/ng.3906 Jo, K., Derin, R., Li, M., Bredt, D.S., 1999. Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J. Neurosci. 19, 4189– 4199. https://doi.org/1999/05/26 00:01 Johnson, S., Stockmeier, C.A., Meyer, J.H., Austin, M.C., Albert, P.R., Wang, J., May, W.L., Rajkowska, G., Overholser, J.C., Jurjus, G., Dieter, L., Johnson, C., Sittman, D.B., Ou, X.M., 2011. The reduction of R1, a novel repressor protein for , in major depressive disorder. Neuropsychopharmacology 36, 2139–2148. https://doi.org/10.1038/npp.2011.105 Johnstone, M., Thomson, P.A., Hall, J., McIntosh, A.M., Lawrie, S.M., Porteous, D.J., 2011. DISC1 in schizophrenia: Genetic mouse models and human genomic imaging. Schizophr. Bull. 37, 14–20. https://doi.org/10.1093/schbul/sbq135 Kaeser-Woo, Y.J., Younts, T.J., Yang, X., Zhou, P., Wu, D., Castillo, P.E., Sudhof, T.C., 2013. Synaptotagmin-12 Phosphorylation by cAMP-Dependent Protein Kinase Is Essential for Hippocampal Mossy Fiber LTP. J. Neurosci. 33, 9769–9780. https://doi.org/10.1523/JNEUROSCI.5814-12.2013 Karakatsani, A., Marichal, N.N., Urban, S., Kalamakis, G., Ghanem, A., Schick, A., Zhang, Y., Conzelmann, K.-K., Rüegg, M.A., Berninger, B., de Almodovar, C.R., Gascón, S., Kröger, S., Ruiz de Almodovar, C., Gascón, S., Kröger, S., 2017. Neuronal LRP4 regulates synapse formation in the developing CNS. Development 144, dev.150110. https://doi.org/10.1242/dev.150110 Karlsson, R., Graae, L., Lekman, M., Wang, D., Favis, R., Axelsson, T., Galter, D., Carmine Belin, A., Paddock, S., 2012. MAGI1 copy number variation in bipolar affective disorder and schizophrenia. Biol. Psychiatry 71, 922–930. https://doi.org/10.1016/j.biopsych.2012.01.020 Karpyak, V.M., Geske, J.R., Colby, C.L., Mrazek, D.A., Biernacka, J.M., 2012. Genetic variability in the NMDA-dependent AMPA trafficking cascade is associated with alcohol dependence. Addict. Biol. 17, 798–806. https://doi.org/10.1111/j.1369- 1600.2011.00338.x Kato, A.S., Zhou, W., Milstein, A.D., Knierman, M.D., Siuda, E.R., Dotzlaf, J.E., Yu, H., Hale, J.E., Nisenbaum, E.S., Nicoll, R.A., Bredt, D.S., 2007. New Transmembrane AMPA Receptor Regulatory Protein Isoform, -7, Differentially Regulates AMPA Receptors. J. Neurosci. 27, 4969–4977. https://doi.org/10.1523/JNEUROSCI.5561- 06.2007 Kawauchi, T., Chihama, K., Nabeshima, Y.I., Hoshino, M., 2003. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration 22, 4190–4201. https://doi.org/10.1093/emboj/cdg413 Kele, J., Andersson, E.R., Villaescusa, J.C., Cajanek, L., Parish, C.L., Bonilla, S., Toledo, E.M., Bryja, V., Rubin, J.S., Shimono, A., Arenas, E., 2012. SFRP1 and SFRP2 dose- dependently regulate midbrain dopamine neuron development in vivo and in embryonic stem cells. Stem Cells 30, 865–875. https://doi.org/10.1002/stem.1049 Kim, E.J., Ables, J.L., Dickel, L.K., Eisch, A.J., Johnson, J.E., 2011. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6, e18472. https://doi.org/10.1371/journal.pone.0018472 Kim, I.H., Racz, B., Wang, H., Burianek, L., Weinberg, R., Yasuda, R., Wetsel, W.C., Soderling, S.H., 2013. Disruption of Arp2/3 Results in Asymmetric Structural Plasticity of Dendritic Spines and Progressive Synaptic and Behavioral Abnormalities. J. Neurosci. 33, 6081–6092. https://doi.org/10.1523/JNEUROSCI.0035-13.2013 Kina, S.I., Tezuka, T., Kusakawa, S., Kishimoto, Y., Kakizawa, S., Hashimoto, K., Ohsugi, M., Kiyama, Y., Horai, R., Sudo, K., Kakuta, S., Iwakura, Y., Iino, M., Kano, M., Manabe, T., Yamamoto, T., 2007. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur. J. Neurosci. 26, 2269–2278. https://doi.org/10.1111/j.1460-9568.2007.05829.x Kiraly, D.D., Lemtiri-Chlieh, F., Levine, E.S., Mains, R.E., Eipper, B.A., 2011. Kalirin Binds the NR2B Subunit of the NMDA Receptor, Altering Its Synaptic Localization and Function. J. Neurosci. 31, 12554–12565. https://doi.org/10.1523/JNEUROSCI.3143- 11.2011 Koch, I., Schwarz, H., Beuchle, D., Goellner, B., Langegger, M., Aberle, H., 2008. Drosophila Ankyrin 2 Is Required for Synaptic Stability. Neuron 58, 210–222. https://doi.org/10.1016/j.neuron.2008.03.019 Koefoed, P., Hansen, T.V.O., Woldbye, D.P.D., Werge, T., Mors, O., Hansen, T., Jakobsen, K.D., Nordentoft, M., Wang, A., Bolwig, T.G., Rehfeld, J.F., 2009. An intron 1 polymorphism in the cholecystokinin-A receptor gene associated with schizophrenia in males. Acta Psychiatr. Scand. 120, 281–287. https://doi.org/10.1111/j.1600- 0447.2009.01400.x Kohda, K., Kakegawa, W., Matsuda, S., Yamamoto, T., Hirano, H., Yuzaki, M., 2013. The 2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc. Natl. Acad. Sci. 110, E948–E957. https://doi.org/10.1073/pnas.1218380110 Koide, T., Banno, M., Aleksic, B., Yamashita, S., Kikuchi, T., Kohmura, K., Adachi, Y., Kawano, N., Kushima, I., Nakamura, Y., Okada, T., Ikeda, M., Ohi, K., Yasuda, Y., Hashimoto, R., Inada, T., Ujike, H., Iidaka, T., Suzuki, M., Takeda, M., Iwata, N., Ozaki, N., 2012. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in Schizophrenic patients. PLoS One 7, e36836. https://doi.org/10.1371/journal.pone.0036836 Korber, C., Werner, M., Kott, S., Ma, Z.-L., Hollmann, M., 2007. The Transmembrane AMPA Receptor Regulatory Protein 4 Is a More Effective Modulator of AMPA Receptor Function than Stargazin ( 2). J. Neurosci. 27, 8442–8447. https://doi.org/10.1523/JNEUROSCI.0424-07.2007 Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S., Clapham, D.E., 2004. SynGAP- MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor- dependent synaptic AMPA receptor potentiation. Neuron 43, 563–574. https://doi.org/10.1016/j.neuron.2004.08.003 Krolewski, R.C., Packard, A., Jang, W., Wildner, H., Schwob, J.E., 2012. Ascl1 (Mash1) knockout perturbs differentiation of nonneuronal cells in olfactory epithelium. PLoS One 7, e51737. https://doi.org/10.1371/journal.pone.0051737 LaRese, T.P., Yan, Y., Eipper, B.A., Mains, R.E., 2017. Using Kalirin conditional knockout mice to distinguish its role in dopamine receptor mediated behaviors. BMC Neurosci. 18, 45. https://doi.org/10.1186/s12868-017-0363-2 Lee, J., Chung, C., Ha, S., Lee, D., Kim, D.-Y., Kim, H., Kim, E., 2015. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front. Cell. Neurosci. 9, 94. https://doi.org/10.3389/fncel.2015.00094 Lee, J.R., 2015. Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development. BMB Rep. https://doi.org/10.5483/BMBRep.2015.48.5.037 Lei, S., Lu, W.Y., Xiong, Z.G., Orser, B.A., Valenzuela, C.F., MacDonald, J.F., 1999. Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J. Biol. Chem. 274, 30617– 30623. https://doi.org/10.1074/jbc.274.43.30617 Levinson, D.F., Duan, J., Oh, S., Wang, K., Sanders, A.R., Shi, J., Zhang, N., Mowry, B.J., Olincy, A., Amin, F., Cloninger, C.R., Silverman, J.M., Buccola, N.G., Byerley, W.F., Black, D.W., Kendler, K.S., Freedman, R., Dudbridge, F., Pe’er, I., Hakonarson, H., Bergen, S.E., Fanous, A.H., Holmans, P.A., Gejman, P. V, 2011. Copy number variants in schizophrenia: Confirmation of five previous finding sand new evidence for 3q29 microdeletions and VIPR2 duplications. Am. J. Psychiatry 168, 302–316. https://doi.org/10.1176/appi.ajp.2010.10060876 Li, M., Niu, F., Zhu, X., Wu, X., Shen, N., Peng, X., Liu, Y., 2015. PRRT2 mutant leads to dysfunction of glutamate signaling. Int. J. Mol. Sci. 16, 9134–9151. https://doi.org/10.3390/ijms16059134 Lian, G., Dettenhofer, M., Lu, J., Downing, M., Chenn, A., Wong, T., Sheen, V., 2016. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development 143, 4509–4520. https://doi.org/10.1242/dev.139295 Lim, S.H., Kwon, S.K., Lee, M.K., Moon, J., Jeong, D.G., Park, E., Kim, S.J., Park, B.C., Lee, S.C., Ryu, S.E., Yu, D.Y., Chung, B.H., Kim, E., Myung, P.K., Lee, J.R., 2009. Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn. EMBO J. 28, 3564–3578. https://doi.org/10.1038/emboj.2009.289 Lin, R., Karpa, K., Kabbani, N., Goldman-Rakic, P., Levenson, R., 2001. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci U S A 98, 5258–5263. https://doi.org/10.1073/pnas.011538198 Lipina, T. V, Prasad, T., Yokomaku, D., Luo, L., Connor, S.A., Kawabe, H., Wang, Y.T., Brose, N., Roder, J.C., Craig, A.M., 2016. Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission. Neuropsychopharmacology 41, 802–10. https://doi.org/10.1038/npp.2015.206 Liu, Y.-H., Tsai, J.-W., Chen, J.-L., Yang, W.-S., Chang, P.-C., Cheng, P.-L., Turner, D.L., Yanagawa, Y., Wang, T.-W., Yu, J.-Y., 2017. Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon. Sci. Rep. 7, 42895. https://doi.org/10.1038/srep42895 Liu, Y.-T., Nian, F.-S., Chou, W.-J., Tai, C.-Y., Kwan, S.-Y., Chen, C., Kuo, P.-W., Lin, P.- H., Chen, C.-Y., Huang, C.-W., Lee, Y.-C., Soong, B.-W., Tsai, J.-W., 2016. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 7, 39184–39196. https://doi.org/10.18632/oncotarget.9258 Llorente-Folch, I., Sahún, I., Contreras, L., Casarejos, M.J., Grau, J.M., Saheki, T., Mena, M.A., Satrústegui, J., Dierssen, M., Pardo, B., 2013. AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J. Neurochem. 124, 347–362. https://doi.org/10.1111/jnc.12096 Ma, X.-M., Kiraly, D.D., Gaier, E.D., Wang, Y., Kim, E.-J., Levine, E.S., Eipper, B.A., Mains, R.E., 2008. Kalirin-7 Is Required for Synaptic Structure and Function. J. Neurosci. 28, 12368–12382. https://doi.org/10.1523/JNEUROSCI.4269-08.2008 Maher, B.J., LoTurco, J.J., 2012. Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS One 7, e34053. https://doi.org/10.1371/journal.pone.0034053 Mandela, P., Ma, X.-M., 2012. Kalirin, a Key Player in Synapse Formation, Is Implicated in Human Diseases. Neural Plast. 2012, 1–9. https://doi.org/10.1155/2012/728161 Mansilla, A., Chaves-Sanjuan, A., Campillo, N.E., Semelidou, O., Martínez-González, L., Infantes, L., González-Rubio, J.M., Gil, C., Conde, S., Skoulakis, E.M.C., Ferrús, A., Martínez, A., Sánchez-Barrena, M.J., 2017. Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proc. Natl. Acad. Sci. 114, E999–E1008. https://doi.org/10.1073/pnas.1611089114 Maximov, A., Shin, O.H., Liu, X., Südhof, T.C., 2007. Synaptotagmin-12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release. J. Cell Biol. 176, 113–124. https://doi.org/10.1083/jcb.200607021 McNeely, K.C., Cupp, T.D., Little, J.N., Janisch, K.M., Shrestha, A., Dwyer, N.D., 2017. Mutation of Kinesin-6 Kif20b causes defects in cortical neuron polarization and morphogenesis. Neural Dev. 12, 5. https://doi.org/10.1186/s13064-017-0082-5 Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S., Nicoll, R.A., 2007. TARP Subtypes Differentially and Dose-Dependently Control Synaptic AMPA Receptor Gating. Neuron 55, 905–918. https://doi.org/10.1016/j.neuron.2007.08.022 Moens, L.N., Ceulemans, S., Alaerts, M., Van Den Bossche, M.J.A., Lenaerts, A.S., De Zutter, S., Norrback, K.F., Adolfsson, R., Del-Favero, J., 2010. PCM1 and schizophrenia: A replication study in the northern Swedish population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 153, 1240–1243. https://doi.org/10.1002/ajmg.b.31088 Mohamad, O., Song, M., Wei, L., Yu, S.P., 2013. Regulatory roles of the NMDA receptor GluN3A subunit in locomotion, Pain perception and cognitive functions in adult mice. J. Physiol. 591, 149–168. https://doi.org/10.1113/jphysiol.2012.239251 Mosca, T.J., Luginbuhl, D.J., Wang, I.E., Luo, L., 2017. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. Elife 6, e27347. https://doi.org/10.7554/eLife.27347 Nadler, J.V., Bray, S.D., Evenson, D.A., 1992. Autoradiographic localization of proline uptake in excitatory hippocampal pathways. Hippocampus 2, 269–278. https://doi.org/10.1002/hipo.450020306 Namekata, K., Harada, C., Taya, C., Guo, X., Kimura, H., Parada, L.F., Harada, T., 2010. Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex. Proc. Natl. Acad. Sci. 107, 7586–7591. https://doi.org/10.1073/pnas.0914514107 Namekata, K., Watanabe, H., Guo, X., Kittaka, D., Kawamura, K., Kimura, A., Harada, C., Harada, T., 2012. Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG. Genes to Cells 17, 688–697. https://doi.org/10.1111/j.1365-2443.2012.01616.x Nanou, E., Kyriakatos, A., Bhattacharjee, A., Kaczmarek, L.K., Paratcha, G., El Manira, A., 2008. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proc. Natl. Acad. Sci. U. S. A. 105, 20941–20946. https://doi.org/10.1073/pnas.0806403106 Naruhashi, K., Kadomatsu, K., Igakura, T., Fan, Q.-W., Kuno, N., Muramatsu, H., Miyauchi, T., Hasegawa, T., Itoh, A., Muramatsu, T., Nabeshima, T., 1997. Abnormalities of Sensory and Memory Functions in Mice LackingBsgGene. Biochem. Biophys. Res. Commun. 236, 733–737. https://doi.org/10.1006/bbrc.1997.6993 Niesler, B., Flohr, T., Nöthen, M.M., Fischer, C., Rietschel, M., Franzek, E., Albus, M., Propping, P., Rappold, G.A., 2001a. Association between the 5′ utr variant c178t of the serotonin receptor gene htr3a and bipolar affective disorder. Pharmacogenetics 11, 471– 475. https://doi.org/10.1097/00008571-200108000-00002 Niesler, B., Weiss, B., Fischer, C., Nöthen, M.M., Propping, P., Bondy, B., Rietschel, M., Maier, W., Albus, M., Franzek, E., Rappold, G.A., 2001b. Serotonin receptor gene HTR3A variants in schizophrenic and bipolar affective patients. Pharmacogenetics 11, 21–27. https://doi.org/10.1097/00008571-200102000-00003 Nishimura, T., Harashima, S. ichi, Yafang, H., Notkins, A.L., 2010. IA-2 modulates dopamine secretion in PC12 cells. Mol. Cell. Endocrinol. 315, 81–86. https://doi.org/10.1016/j.mce.2009.09.023 Nishimura, T., Kubosaki, A., Ito, Y., Notkins, A.L., 2009. Disturbances in the secretion of neurotransmitters in IA-2/IA-2β null mice: Changes in behavior, learning and lifespan. Neuroscience 159, 427–437. https://doi.org/10.1016/j.neuroscience.2009.01.022 Nunokawa, A., Watanabe, Y., Kaneko, N., Sugai, T., Yazaki, S., Arinami, T., Ujike, H., Inada, T., Iwata, N., Kunugi, H., Sasaki, T., Itokawa, M., Ozaki, N., Hashimoto, R., Someya, T., 2010. The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: Case-control studies and an updated meta-analysis. Schizophr. Res. 116, 61–67. https://doi.org/10.1016/j.schres.2009.10.016 O’Keeffe, G.C., Tyers, P., Aarsland, D., Dalley, J.W., Barker, R.A., Caldwell, M.A., 2009. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc. Natl. Acad. Sci. 106, 8754–8759. https://doi.org/10.1073/pnas.0803955106 Ori-McKenney, K.M., Vallee, R.B., 2011. Neuronal migration defects in the loa dynein mutant mouse. Neural Dev. 6, 26. https://doi.org/10.1186/1749-8104-6-26 Ota, V.K., Bellucco, F.T., Gadelha, A., Santoro, M.L., Noto, C., Christofolini, D.M., Assunção, I.B., Yamada, K.M., Ribeiro-dos-Santos, Â.K., Santos, S., Mari, J.J., Smith, M.A.C., Melaragno, M.I., Bressan, R.A., Sato, J.R., Jackowski, A.P., Belangero, S.I., 2014. PRODH polymorphisms, cortical volumes and thickness in schizophrenia. PLoS One 9, e87686. https://doi.org/10.1371/journal.pone.0087686 Ou, X.-M., Chen, K., Shih, J.C., 2006. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc. Natl. Acad. Sci. U. S. A. 103, 10923–8. https://doi.org/10.1073/pnas.0601515103 Panaccione, I., Napoletano, F., Forte, A., Kotzalidis, G., Casale, A., Rapinesi, C., Brugnoli, C., Serata, D., Caccia, F., Cuomo, I., Ambrosi, E., Simonetti, A., Savoja, V., Chiara, L., Danese, E., Manfredi, G., Janiri, D., Motolese, M., Nicoletti, F., Girardi, P., Sani, G., 2013. Neurodevelopment in Schizophrenia: The Role of the Wnt Pathways. Curr. Neuropharmacol. 11, 535–558. https://doi.org/10.2174/1570159X113119990037 Parker, L.L., Backstrom, J.R., Sanders-Bush, E., Shieh, B.H., 2003. Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J. Biol. Chem. 278, 21576–21583. https://doi.org/10.1074/jbc.M210973200 Paterlini, M., Zakharenko, S.S., Lai, W.S., Qin, J., Zhang, H., Mukai, J., Westphal, K.G.C., Olivier, B., Sulzer, D., Pavlidis, P., Siegelbaum, S.A., Karayiorgou, M., Gogos, J.A., 2005. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat. Neurosci. 8, 1586–1594. https://doi.org/10.1038/nn1562 Pattyn, A., Guillemot, F., Brunet, J.F., 2006. Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev. Biol. 295, 67–75. https://doi.org/10.1016/j.ydbio.2006.03.008 Pavlopoulos, E., Trifilieff, P., Chevaleyre, V., Fioriti, L., Zairis, S., Pagano, A., Malleret, G., Kandel, E.R., 2011. Neuralized1 activates CPEB3: A function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147, 1369–1383. https://doi.org/10.1016/j.cell.2011.09.056 Paylor, R., Glaser, B., Mupo, A., Ataliotis, P., Spencer, C., Sobotka, A., Sparks, C., Choi, C.- H., Oghalai, J., Curran, S., Murphy, K.C., Monks, S., Williams, N., O’Donovan, M.C., Owen, M.J., Scambler, P.J., Lindsay, E., 2006. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome. Proc. Natl. Acad. Sci. 103, 7729–7734. https://doi.org/10.1073/pnas.0600206103 Peça, J., Feliciano, C., Ting, J.T., Wang, W., Wells, M.F., Venkatraman, T.N., Lascola, C.D., Fu, Z., Feng, G., 2011. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442. https://doi.org/10.1038/nature09965 Peykov, S., Berkel, S., Schoen, M., Weiss, K., Degenhardt, F., Strohmaier, J., Weiss, B., Proepper, C., Schratt, G., Nöthen, M.M., Boeckers, T.M., Rietschel, M., Rappold, G.A., 2015. Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol. Psychiatry 20, 1489–1498. https://doi.org/10.1038/mp.2014.172 Pohlkamp, T., Durakoglugil, M., Lane-Donovan, C., Xian, X., Johnson, E.B., Hammer, R.E., Herz, J., 2015. Lrp4 domains differentially regulate limb/brain development and synaptic plasticity. PLoS One 10, e0116701. https://doi.org/10.1371/journal.pone.0116701 Proulx, É., Young, E.J., Osborne, L.R., Lambe, E.K., 2010. Enhanced prefrontal serotonin 5- HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety. J. Neurodev. Disord. 2, 99–108. https://doi.org/10.1007/s11689-010-9044-5 Raber, J., Wong, D., Buttini, M., Orth, M., Bellosta, S., Pitas, R.E., Mahley, R.W., Mucke, L., 2002. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: Increased susceptibility of females. Proc. Natl. Acad. Sci. 95, 10914–10919. https://doi.org/10.1073/pnas.95.18.10914 Ramírez, V.T., Ramos-Fernández, E., Henríquez, J.P., Lorenzo, A., Inestrosa, N.C., 2016. Wnt-5a/frizzled9 receptor signaling through the Gαo-Gβγ complex regulates dendritic spine formation. J. Biol. Chem. 291, 19092–19107. https://doi.org/10.1074/jbc.M116.722132 Ranneva, S.V., Pavlov, K.S., Gromova, A.V., Amstislavskaya, T.G., Lipina, T.V., 2017. Features of emotional and social behavioral phenotypes of calsyntenin2 knockout mice. Behav. Brain Res. 332, 343–354. https://doi.org/10.1016/j.bbr.2017.06.029 Rao, N.R., Abad, C., Perez, I.C., Srivastava, A.K., Young, J.I., Walz, K., 2017. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice. Biology (Basel). 6, 25. https://doi.org/http://dx.doi.org/10.3390/biology6020025 Raynaud, F., Janossy, A., Dahl, J., Bertaso, F., Perroy, J., Varrault, A., Vidal, M., Worley, P.F., Boeckers, T.M., Bockaert, J., Marin, P., Fagni, L., Homburger, V., 2013. Shank3- Rich2 interaction regulates AMPA receptor recycling and synaptic long-term potentiation. J. Neurosci. 33, 9699–9715. https://doi.org/10.1523/JNEUROSCI.2725- 12.2013 Reith, R.M., McKenna, J., Wu, H., Hashmi, S.S., Cho, S.H., Dash, P.K., Gambello, M.J., 2013. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 51, 93–103. https://doi.org/10.1016/j.nbd.2012.10.014 Rejeb, I., Ben Jemaa, L., Abaied, L., Kraoua, L., Saillour, Y., Maazoul, F., Chelly, J., Chaabouni, H., 2011. A novel frame shift mutation in the PQBP1 gene identified in a Tunisian family with X-linked mental retardation. Eur. J. Med. Genet. 54, 241–246. https://doi.org/10.1016/j.ejmg.2011.01.010 Robertshaw, E., Matsumoto, K., Lumsden, A., Kiecker, C., 2013. Irx3 and Pax6 establish differential competence for Shh-mediated induction of GABAergic and glutamatergic neurons of the thalamus. Proc. Natl. Acad. Sci. 110, E3919–E3926. https://doi.org/10.1073/pnas.1304311110 Romero-Pozuelo, J., Dason, J.S., Mansilla, A., Banos-Mateos, S., Sardina, J.L., Chaves- Sanjuan, A., Jurado-Gomez, J., Santana, E., Atwood, H.L., Hernandez-Hernandez, A., Sanchez-Barrena, M.-J., Ferrus, A., 2014. The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release. J. Cell Sci. 127, 4246–4259. https://doi.org/10.1242/jcs.152603 Ru, W., Peng, Y., Zhong, L., Tang, S.J., 2012. A role of the mammalian target of rapamycin (mTOR) in glutamate-induced down-regulation of tuberous sclerosis complex proteins 2 (TSC2). J. Mol. Neurosci. 47, 340–345. https://doi.org/10.1007/s12031-012-9753-1 Ruat, M., Traiffort, E., 2013. Roles of the calcium sensing receptor in the central nervous system. Best Pract. Res. Clin. Endocrinol. Metab. 27, 429–442. https://doi.org/10.1016/j.beem.2013.03.001 Ruisu, K., Kask, K., Meier, R., Saare, M., Raid, R., Veraksitš, A., Karis, A., Tõnissoo, T., Pooga, M., 2013. Ablation of RIC8A Function in Mouse Neurons Leads to a Severe Neuromuscular Phenotype and Postnatal Death. PLoS One 8, e74031. https://doi.org/10.1371/journal.pone.0074031 Sakai, K., Shoji, H., Kohno, T., Miyakawa, T., Hattori, M., 2016. Mice that lack the C- Terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders. Sci. Rep. 6, 28636. https://doi.org/10.1038/srep28636 Sanjuan, J., Toirac, I., González, J.C., Leal, C., Moltó, M.D., Nájera, C., De Frutos, R., 2004. A possible association between the CCK-AR gene and persistent auditory hallucinations in schizophrenia. Eur. Psychiatry 19, 349–353. https://doi.org/10.1016/j.eurpsy.2004.06.015 Sansom, S.N., Griffiths, D.S., Faedo, A., Kleinjan, D.J., Ruan, Y., Smith, J., Van Heyningen, V., Rubenstein, J.L., Livesey, F.J., 2009. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 5, e1000511. https://doi.org/10.1371/journal.pgen.1000511 Sasaki, J., Kofuji, S., Itoh, R., Momiyama, T., Takayama, K., Murakami, H., Chida, S., Tsuya, Y., Takasuga, S., Eguchi, S., Asanuma, K., Horie, Y., Miura, K., Davies, E.M., Mitchell, C., Yamazaki, M., Hirai, H., Takenawa, T., Suzuki, A., Sasaki, T., 2010. The PtdIns(3,4)P2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465, 497–501. https://doi.org/10.1038/nature09023 Sato, A., 2016. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS Neurol. Disord. Drug Targets 15, 533–43. https://doi.org/10.2174/1871527315666160413120638 Sato, A., Kasai, S., Kobayashi, T., Takamatsu, Y., Hino, O., Ikeda, K., Mizuguchi, M., 2012. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat. Commun. 3, 1292. https://doi.org/10.1038/ncomms2295 Schmeisser, M.J., Ey, E., Wegener, S., Bockmann, J., Stempel, A.V., Kuebler, A., Janssen, A.L., Udvardi, P.T., Shiban, E., Spilker, C., Balschun, D., Skryabin, B. V., Dieck, S. tom, Smalla, K.H., Montag, D., Leblond, C.S., Faure, P., Torquet, N., Le Sourd, A.M., Toro, R., Grabrucker, A.M., Shoichet, S.A., Schmitz, D., Kreutz, M.R., Bourgeron, T., Gundelfinger, E.D., Boeckers, T.M., 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260. https://doi.org/10.1038/nature11015 Scholz, R., Berberich, S., Rathgeber, L., Kolleker, A., Köhr, G., Kornau, H.C., 2010. AMPA Receptor Signaling through BRAG2 and Arf6 Critical for Long-Term Synaptic Depression. Neuron 66, 768–780. https://doi.org/10.1016/j.neuron.2010.05.003 Šekeljić, V., Andjus, P.R., 2012. Tenascin-C and its functions in neuronal plasticity. Int. J. Biochem. Cell Biol. 44, 825–829. https://doi.org/10.1016/j.biocel.2012.02.014 Setou, M., Nakagawa, T., Seog, D.H., Hirokawa, N., 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor- containing vesicle transport. Science (80-. ). 288, 1796–1802. https://doi.org/10.1126/science.288.5472.1796 Shen, E.Y., Jiang, Y., Mao, W., Futai, K., Hock, H., Akbarian, S., 2015. Cognition and mood-related behaviors in L3mbtl1 null mutant mice. PLoS One 10, e0121252. https://doi.org/10.1371/journal.pone.0121252 Shigetomi, E., Tong, X., Kwan, K.Y., Corey, D.P., Khakh, B.S., 2012. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat. Neurosci. 15, 70–80. https://doi.org/10.1038/nn.3000 Shin, H., Wyszynski, M., Huh, K.H., Valtschanoff, J.G., Lee, J.R., Ko, J., Streuli, M., Weinberg, R.J., Sheng, M., Kim, E., 2003. Association of the kinesin motor KIF1A with the multimodular protein liprin-α. J. Biol. Chem. 278, 11393–11401. https://doi.org/10.1074/jbc.M211874200 Singh, U., Kumar, S., Shelkar, G.P., Yadav, M., Kokare, D.M., Goswami, C., Lechan, R.M., Singru, P.S., 2016. Transient receptor potential vanilloid 3 (TRPV3) in the ventral tegmental area of rat: Role in modulation of the mesolimbic-dopamine reward pathway. Neuropharmacology 110, 198–210. https://doi.org/10.1016/j.neuropharm.2016.04.012 Skinbjerg, M., Ariano, M.A., Thorsell, A., Heilig, M., Halldin, C., Innis, R.B., Sibley, D.R., 2009. Arrestin3 mediates D(2) dopamine receptor internalization. Synapse 63, 621–624. https://doi.org/10.1002/syn.20636 Smith, K.R., Kopeikina, K.J., Fawcett-Patel, J.M., Leaderbrand, K., Gao, R., Schürmann, B., Myczek, K., Radulovic, J., Swanson, G.T., Penzes, P., 2014. Psychiatric Risk Factor ANK3/Ankyrin-G Nanodomains Regulate the Structure and Function of Glutamatergic Synapses. Neuron 84, 399–415. https://doi.org/10.1016/j.neuron.2014.10.010 Smith, M.J., Pozo, K., Brickley, K., Stephenson, F.A., 2006. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J. Biol. Chem. 281, 27216–27228. https://doi.org/10.1074/jbc.M600522200 Soler-Llavina, G.J., Arstikaitis, P., Morishita, W., Ahmad, M., Südhof, T.C., Malenka, R.C., 2013. Leucine-rich repeat transmembrane proteins are essential for maintenance of long- term potentiation. Neuron 79, 439–446. https://doi.org/10.1016/j.neuron.2013.06.007 Sousa, K.M., Carlos Villaescusa, J., Cajanek, L., Ondr, J.K., Castelo-Branco, G., Hofstra, W., Bryja, V., Palmberg, C., Bergman, T., Wainwright, B., Lang, R.A., Arenas, E., 2010. Wnt2 regulates progenitor proliferation in the developing ventral midbrain. J. Biol. Chem. 285, 7246–7253. https://doi.org/10.1074/jbc.M109.079822 Spence, E.F., Kanak, D.J., Carlson, B.R., Soderling, S.H., 2016. The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing. J. Neurosci. 36, 9696–9709. https://doi.org/10.1523/JNEUROSCI.0876- 16.2016 Spoelgen, R., 2005. LRP2/megalin is required for patterning of the ventral telencephalon. Development 132, 405–414. https://doi.org/10.1242/dev.01580 Spuch, C., Ortolano, S., Navarro, C., 2012. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in alzheimer’s disease. Front. Physiol. https://doi.org/10.3389/fphys.2012.00269 Stamenkovic, V., Milenkovic, I., Galjak, N., Todorovic, V., Andjus, P., 2017. Enriched environment alters the behavioral profile of tenascin-C deficient mice. Behav. Brain Res. 331, 241–253. https://doi.org/10.1016/j.bbr.2017.05.047 Stottmann, R.W., Tran, P. V., Turbe-Doan, A., Beier, D.R., 2009. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev. Biol. 335, 166– 178. https://doi.org/10.1016/j.ydbio.2009.08.023 Studniarczyk, D., Coombs, I., Cull-Candy, S.G., Farrant, M., 2013. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat. Neurosci. 16, 1266– 1274. https://doi.org/10.1038/nn.3473 Sun, B., Bang, S.I., Jin, Y.H., 2009. Transient receptor potential A1 increase glutamate release on brain stem neurons. Neuroreport 20, 1002–1006. https://doi.org/10.1097/WNR.0b013e32832d2219 Sunmonu, N.A., Li, K., Guo, Q., Li, J.Y.H., 2011. Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary. Development 138, 725–734. https://doi.org/10.1242/dev.055665 Tamura, T., Horiuchi, D., Chen, Y.-C., Sone, M., Miyashita, T., Saitoe, M., Yoshimura, N., Chiang, A.-S., Okazawa, H., 2010. Drosophila PQBP1 Regulates Learning Acquisition at Projection Neurons in Aversive Olfactory Conditioning. J. Neurosci. 30, 14091– 14101. https://doi.org/10.1523/JNEUROSCI.1319-10.2010 Telley, L., Cadilhac, C., Cioni, J.M., Saywell, V., Jahannault-Talignani, C., Huettl, R.E., Sarrailh-Faivre, C., Dayer, A., Huber, A.B., Ango, F., 2016. Dual Function of NRP1 in Axon Guidance and Subcellular Target Recognition in Cerebellum. Neuron 91, 1276– 1291. https://doi.org/10.1016/j.neuron.2016.08.015 Thakar, S., Wang, L., Yu, T., Ye, M., Onishi, K., Scott, J., Qi, J., Fernandes, C., Han, X., Yates, J.R., Berg, D.K., Zou, Y., 2017. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc. Natl. Acad. Sci. 114, E610–E618. https://doi.org/10.1073/pnas.1612062114 Tõnissoo, T., Kõks, S., Meier, R., Raud, S., Plaas, M., Vasar, E., Karis, A., 2006. Heterozygous mice with Ric-8 mutation exhibit impaired spatial memory and decreased anxiety. Behav. Brain Res. 167, 42–48. https://doi.org/10.1016/j.bbr.2005.08.025 Trinh, M.A., Kaphzan, H., Wek, R.C., Pierre, P., Cavener, D.R., Klann, E., 2012. Brain- Specific Disruption of the eIF2α Kinase PERK Decreases ATF4 Expression and Impairs Behavioral Flexibility. Cell Rep. 1, 676–688. https://doi.org/10.1016/j.celrep.2012.04.010 Tsai, L.-C.C.L., Chan, G.C.-K., Nangle, S.N., Shimizu-Albergine, M., Jones, G.L., Storm, D.R., Beavo, J.A., Zweifel, L.S., 2012. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay. Genes, Brain Behav. 11, 837–847. https://doi.org/10.1111/j.1601-183X.2012.00836.x Tuoc, T., Dere, E., Radyushkin, K., Pham, L., Nguyen, H., Tonchev, A.B., Sun, G., Ronnenberg, A., Shi, Y., Staiger, J.F., Ehrenreich, H., Stoykova, A., 2017. Ablation of BAF170 in Developing and Postnatal Dentate Gyrus Affects Neural Stem Cell Proliferation, Differentiation, and Learning. Mol. Neurobiol. 54, 4618–4635. https://doi.org/10.1007/s12035-016-9948-5 Tuoc, T.C., Boretius, S., Sansom, S.N., Pitulescu, M.E., Frahm, J., Livesey, F.J., Stoykova, A., 2013. Chromatin Regulation by BAF170 Controls Cerebral Cortical Size and Thickness. Dev. Cell 25, 256–269. https://doi.org/10.1016/j.devcel.2013.04.005 Tuoc, T.C., Radyushkin, K., Tonchev, A.B., Pinon, M.C., Ashery-Padan, R., Molnar, Z., Davidoff, M.S., Stoykova, A., 2009. Selective Cortical Layering Abnormalities and Behavioral Deficits in Cortex-Specific Pax6 Knock-Out Mice. J. Neurosci. 29, 8335– 8349. https://doi.org/10.1523/JNEUROSCI.5669-08.2009 Tzavara, E.T., Bymaster, F.P., Davis, R.J., Wade, M.R., Perry, K.W., Wess, J., McKinzie, D.L., Felder, C., Nomikos, G.G., 2004. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 18, 1410–1412. https://doi.org/10.1096/fj.04-1575fje Uchino, S., Wada, H., Honda, S., Hirasawa, T., Yanai, S., Nakamura, Y., Ondo, Y., Kohsaka, S., 2003. Slo2 sodium-activated K+channels bind to the PDZ domain of PSD-95. Biochem. Biophys. Res. Commun. 310, 1140–1147. https://doi.org/10.1016/j.bbrc.2003.09.133 Uetani, N., 2000. Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J. 19, 2775–2785. https://doi.org/10.1093/emboj/19.12.2775 Um, J.W., Choii, G., Park, D., Kim, D., Jeon, S., Kang, H., Mori, T., Papadopoulos, T., Yoo, T., Lee, Y., Kim, E., Tabuchi, K., Ko, J., 2016. IQ Motif and SEC7 domain-containing protein 3 (IQSEC3) interacts with gephyrin to promote inhibitory synapse formation. J. Biol. Chem. 291, 10119–10130. https://doi.org/10.1074/jbc.M115.712893 Underhill, S.M., Wheeler, D.S., Amara, S.G., 2015. Differential Regulation of Two Isoforms of the Glial Glutamate Transporter EAAT2 by DLG1 and CaMKII. J. Neurosci. 35, 5260–5270. https://doi.org/10.1523/JNEUROSCI.4365-14.2015 Utsunomiya, K., Shinkai, T., De Luca, V., Hwang, R., Sakata, S., Fukunaka, Y., Chen, H.I., Ohmori, O., Nakamura, J., 2008. Genetic association between the dopamine D3 gene polymorphism (Ser9Gly) and schizophrenia in Japanese populations: Evidence from a case-control study and meta-analysis. Neurosci. Lett. 444, 161–165. https://doi.org/10.1016/j.neulet.2008.08.005 Valente, P., Castroflorio, E., Rossi, P., Fadda, M., Sterlini, B., Cervigni, R.I., Prestigio, C., Giovedì, S., Onofri, F., Mura, E., Guarnieri, F.C., Marte, A., Orlando, M., Zara, F., Fassio, A., Valtorta, F., Baldelli, P., Corradi, A., Benfenati, F., 2016. PRRT2 Is a Key Component of the Ca2+-Dependent Neurotransmitter Release Machinery. Cell Rep. 15, 117–131. https://doi.org/10.1016/j.celrep.2016.03.005 Valenzuela, C.F., Xiong, Z., MacDonald, J.F., Weiner, J.L., Frazier, C.J., Dunwiddie, T. V, Kazlauskas, A., Whiting, P.J., Harris, R.A., 1996. Platelet-derived growth factor induces a long-term inhibition of N-methyl-D-aspartate receptor function. J. Biol. Chem. 271, 16151–9. Valtorta, F., Benfenati, F., Zara, F., Meldolesi, J., 2016. PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci. https://doi.org/10.1016/j.tins.2016.08.005 van der Werf, I.M., Van Dam, D., Missault, S., Yalcin, B., De Deyn, P.P., Vandeweyer, G., Kooy, R.F., 2017. Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders. Behav. Brain Res. 328, 218–226. https://doi.org/10.1016/j.bbr.2017.04.014 Vingtdeux, V., Chang, E.H., Frattini, S.A., Zhao, H., Chandakkar, P., Adrien, L., Strohl, J.J., Gibson, E.L., Ohmoto, M., Matsumoto, I., Huerta, P.T., Marambaud, P., 2016. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci. Rep. 6, 24250. https://doi.org/10.1038/srep24250 Voikar, V., Kulesskaya, N., Laakso, T., Lauren, J., Strittmatter, S.M., Airaksinen, M.S., 2013. LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures-A tentative mouse model for claustrophobia-like behaviour. Behav. Brain Res. 238, 69–78. https://doi.org/10.1016/j.bbr.2012.10.013 Walch, L., 2013. Emerging role of the scaffolding protein Dlg1 in vesicle trafficking. Traffic. https://doi.org/10.1111/tra.12089 Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B., Cooper, G.M., Nord, A.S., Kusenda, M., Malhotra, D., Bhandari, A., Stray, S.M., Rippey, C.F., Roccanova, P., Makarov, V., Lakshmi, B., Findling, R.L., Sikich, L., Stromberg, T., Merriman, B., Gogtay, N., Butler, P., Eckstrand, K., Noory, L., Gochman, P., Long, R., Chen, Z., Davis, S., Baker, C., Eichler, E.E., Meltzer, P.S., Nelson, S.F., Singleton, A.B., Lee, M.K., Rapoport, J.L., King, M.C., Sebat, J., 2008. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science (80-. ). 320, 539–543. https://doi.org/10.1126/science.1155174 Wang, H., Ge, G., Uchida, Y., Luu, B., Ahn, S., 2011. Gli3 Is Required for Maintenance and Fate Specification of Cortical Progenitors. J. Neurosci. 31, 6440–6448. https://doi.org/10.1523/JNEUROSCI.4892-10.2011 Wang, N., Xu, J., 2015. Functions of kinesin superfamily proteins in neuroreceptor trafficking. Biomed Res. Int. https://doi.org/10.1155/2015/639301 Wassef, A., Baker, J., Kochan, L.D., 2003. GABA and Schizophrenia: A Review of Basic Science and Clinical Studies. J. Clin. Psychopharmacol. 23, 601–640. https://doi.org/10.1097/01.jcp.0000095349.32154.a5 Webber, E., Li, L., Chin, L.-S., 2008. Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking. J. Mol. Biol. 382, 638–51. https://doi.org/10.1016/j.jmb.2008.07.045 Wei, M., Jia, M., Zhang, J., Yu, L., Zhao, Y., Chen, Y., Ma, Y., Zhang, W., Shi, Y.S., Zhang, C., 2017. The Inhibitory Effect of α/β- Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors. Front. Mol. Neurosci. 10, 55. https://doi.org/10.3389/fnmol.2017.00055 Wei, M., Zhang, J., Jia, M., Yang, C., Pan, Y., Li, S., Luo, Y., Zheng, J., Ji, J., Chen, J., Hu, X., Xiong, J., Shi, Y., Zhang, C., 2016. α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc. Natl. Acad. Sci. 113, E2695–E2704. https://doi.org/10.1073/pnas.1524589113 Weisenhaus, M., Allen, M.L., Yang, L., Lu, Y., Nichols, C.B., Su, T., Hell, J.W., Mcknight, G.S., 2010. Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice. PLoS One 5, e10325. https://doi.org/10.1371/journal.pone.0010325 Williams, N.M., 2011. Molecular mechanisms in 22q11 deletion syndrome. Schizophr. Bull. https://doi.org/10.1093/schbul/sbr095 Williams, N.M., Glaser, B., Norton, N., Williams, H., Pierce, T., Moskvina, V., Monks, S., Del Favero, J., Goossens, D., Rujescu, D., Giegling, I., Kirov, G., Craddock, N., Murphy, K.C., O’Donovan, M.C., Owen, M.J., 2008. Strong evidence that GNB1L is associated with schizophrenia. Hum. Mol. Genet. 17, 555–566. https://doi.org/10.1093/hmg/ddm330 Wilson, S.L., Wilson, J.P., Wang, C., Wang, B., Mcconnell, S.K., 2012. Primary cilia and Gli3 activity regulate cerebral cortical size. Dev. Neurobiol. 72, 1196–1212. https://doi.org/10.1002/dneu.20985 Wojcik, S.M., Rhee, J.S., Herzog, E., Sigler, A., Jahn, R., Takamori, S., Brose, N., Rosenmund, C., 2004. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc. Natl. Acad. Sci. U. S. A. 101, 7158–63. https://doi.org/10.1073/pnas.0401764101 Won, H., Lee, H.R., Gee, H.Y., Mah, W., Kim, J.I., Lee, J.J.S., Ha, S., Chung, C., Jung, E.S., Cho, Y.S., Park, S.G., Lee, J.J.S., Lee, K., Kim, D., Bae, Y.C., Kaang, B.K., Lee, M.G., Kim, E., 2012. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265. https://doi.org/10.1038/nature11208 Xie, Z., Cahill, M.E., Radulovic, J., Wang, J., Campbell, S.L., Miller, C.A., Sweatt, J.D., Penzes, P., 2011. Hippocampal phenotypes in kalirin-deficient mice. Mol. Cell. Neurosci. 46, 45–54. https://doi.org/10.1016/j.mcn.2010.08.005 Xu, C., Fu, X., Zhu, S., Liu, J.-J., 2016. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol. Biol. Cell 27, 3342–3356. https://doi.org/10.1091/mbc.E16-05-0326 Xu, J., Xiao, N., Xia, J., 2010. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat. Neurosci. 13, 22–24. https://doi.org/10.1038/nn.2459 Yamazaki, M., Fukaya, M., Hashimoto, K., Yamasaki, M., Tsujita, M., Itakura, M., Abe, M., Natsume, R., Takahashi, M., Kano, M., Sakimura, K., Watanabe, M., 2010. TARPs γ-2 and γ-7 are essential for AMPA receptor expression in the cerebellum. Eur. J. Neurosci. 31, 2204–2220. https://doi.org/10.1111/j.1460-9568.2010.07254.x Yan, Z., Wei, J., Graziane, N.M., Wang, H., Zhong, P., Wang, Q., Liu, W., Hayashi-Takagi, A., Korth, C., Sawa, A., Brandon, N.J., 2014. Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia- 1. Biol. Psychiatry 75, 414–424. https://doi.org/10.1016/j.biopsych.2013.06.009 Ying, G., Wu, S., Hou, R., Huang, W., Capecchi, M.R., Wu, Q., 2009. The Protocadherin Gene Celsr3 Is Required for Interneuron Migration in the Mouse Forebrain. Mol. Cell. Biol. 29, 3045–3061. https://doi.org/10.1128/MCB.00011-09 Yokoyama, T., Ohbuchi, T., Saito, T., Sudo, Y., Fujihara, H., Minami, K., Nagatomo, T., Uezono, Y., Ueta, Y., 2011. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats. Eur. J. Pharmacol. 655, 31–37. https://doi.org/10.1016/j.ejphar.2011.01.011 Yoshimura, N., Horiuchi, D., Shibata, M., Saitoe, M., Qi, M. ling, Okazawa, H., 2006. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship. FEBS Lett. 580, 2335–2340. https://doi.org/10.1016/j.febslet.2006.03.056 Yu, H., Wang, L., Lv, L., Ma, C., Du, B., Lu, T., Jin, C., Yan, H., Yang, Y., Li, W., Ruan, Y., Zhang, Hongyan, Zhang, Hongxing, Mi, W., Mowry, B., Ma, W., Li, K., Zhang, D., Yue, W., 2016. Genome-wide association study suggested the PTPRD polymorphisms were associated with weight gain effects of atypical antipsychotic medications. Schizophr. Bull. 42, 814–823. https://doi.org/10.1093/schbul/sbv179 Yu, X., Wang, G., Gilmore, A., Yee, A.X., Li, X., Xu, T., Smith, S.J., Chen, L., Zuo, Y., 2013. Accelerated Experience-Dependent Pruning of Cortical Synapses in Ephrin-A2 Knockout Mice. Neuron 80, 64–71. https://doi.org/10.1016/j.neuron.2013.07.014 Zhang, Y. V., Hannan, S.B., Kern, J. V., Stanchev, D.T., Koç, B., Jahn, T.R., Rasse, T.M., 2017. The KIF1A homolog Unc-104 is important for spontaneous release, postsynaptic density maturation and perisynaptic scaffold organization. Sci. Rep. 7, 38172. https://doi.org/10.1038/srep38172 Zhang, Y. V., Hannan, S.B., Stapper, Z.A., Kern, J. V., Jahn, T.R., Rasse, T.M., 2016. The Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation. Front. Cell. Neurosci. 10, 207. https://doi.org/10.3389/fncel.2016.00207 Zhao, C., 2005. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 132, 2917– 2927. https://doi.org/10.1242/dev.01871 Zhao, X.F., Kohen, R., Parent, R., Duan, Y., Fisher, G.L., Korn, M.J., Ji, L., Wan, G., Jin, J., Püschel, A.W., Dolan, D.F., Parent, J.M., Corfas, G., Murphy, G.G., Giger, R.J., 2018. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors. Cell Rep. 22, 456–470. https://doi.org/10.1016/j.celrep.2017.12.044 Zheng, C., Fu, Q., Shen, Y., Xu, Q., 2012. Investigation of allelic heterogeneity of the CCK- A receptor gene in paranoid schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 159B, 741–747. https://doi.org/10.1002/ajmg.b.32079 Zhou, W.J., Xu, N., Kong, L., Sun, S.C., Xu, X.F., Jia, M.Z., Wang, Y., Chen, Z.Y., 2016. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl. Psychiatry 6, e892. https://doi.org/10.1038/tp.2016.122 Zhou, Z., Hu, Z.Z., Zhang, L., Hu, Z.Z., Liu, H., Liu, Z., Du, J., Zhao, J., Zhou, L., Xia, K., Tang, B., Shen, L., 2016. Identification of RELN variation p.Thr3192Ser in a Chinese family with schizophrenia. Sci. Rep. 6, 24327. https://doi.org/10.1038/srep24327 Zhu, S., Cordner, Z.A., Xiong, J., Chiu, C.-T., Artola, A., Zuo, Y., Nelson, A.D., Kim, T.-Y., Zaika, N., Woolums, B.M., Hess, E.J., Wang, X., Chuang, D.-M., Pletnikov, M.M., Jenkins, P.M., Tamashiro, K.L., Ross, C.A., 2017. Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder. Proc. Natl. Acad. Sci. 114, 201700689. https://doi.org/10.1073/pnas.1700689114 Zoubovsky, S., Oh, E.C., Cash-Padgett, T., Johnson, A.W., Hou, Z., Mori, S., Gallagher, M., Katsanis, N., Sawa, A., Jaaro-Peled, H., 2015. Neuroanatomical and behavioral deficits in mice haploinsufficient for Pericentriolar material 1 (Pcm1). Neurosci. Res. 98, 45–49. https://doi.org/10.1016/j.neures.2015.02.002