Arp31946 P050

Total Page:16

File Type:pdf, Size:1020Kb

Arp31946 P050 Aviva Systems Biology HNF4A Antibody - N-terminal region (ARP31946_P050) Product Number ARP31946_P050 Product Page http://www.avivasysbio.com/hnf4a-antibody-n-terminal-region-arp31946-p050.html Product Name HNF4A Antibody - N-terminal region (ARP31946_P050) Size 100 ul Gene Symbol HNF4A Alias Symbols HNF4, HNF4a7, HNF4a8, HNF4a9, HNF4alpha, MODY, MODY1, NR2A1, NR2A21, TCF, TCF14 Protein Size (# AA) 474 amino acids Molecular Weight 53kDa Product Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. NCBI Gene Id 3172 Host Rabbit Clonality Polyclonal Concentration Batch dependent within range: 100 ul at 0.5 - 1 mg/ml Official Gene Full Hepatocyte nuclear factor 4, alpha Name Description This is a rabbit polyclonal antibody against HNF4A. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire ([email protected]). Peptide Sequence Synthetic peptide located within the following region: MRLSKTLVDMDMADYSAALDPAYTTLEFENVQVLTMGNDTSPSEGTNLNA Description of The protein encoded by this gene is a nuclear transcription factor which binds DNA as a Target homodimer. The encoded protein controls the expression of several genes, including hepatocyte nuclear factor 1 alpha, a transcription factor which regulates the expression of several hepatic genes. This gene may play a role in development of the liver, kidney, and intestines. Mutations in this gene have been associated with monogenic autosomal dominant non-insulin-dependent diabetes mellitus type I. Alternative splicing of this gene results in multiple transcript variants encoding several different isoforms. Protein Interactions PIAS4; SUMO1; SUMO2; RNF4; SUB1; CREBBP; TBP; TAF9; TAF6; TADA2A; GTF2H1; GTF2B; ANP32B; MDM2; GPS2; PPARGC1A; HNF4A; NCOA6; SMAD4; SMAD3; PNRC2; COPS5; PNRC1; NR0B2; NRIP1; UBE2I; PROX1; NPPA; SREBF2; VDR; MAPK3; MAPK1; SIRT1; SREBF1; XPO1; SP1; HDAC3; T Reconstitution and For short term use, store at 2-8C up to 1 week. For long term storage, store at -20C in Storage small aliquots to prevent freeze-thaw cycles. Lead Time Domestic: within 1-2 days delivery International: 1-2 days *** Required Wet/Dry Ice Surcharge will automatically be applied upon checkout for the shipment. See Surcharges Blocking Peptide For anti-HNF4A (ARP31946_P050) antibody is Catalog # AAP31946 5754 Pacific Center Blvd., Suite 201 San Diego, CA 92121 USA | Tel: (858)552-6979 | [email protected] 1 Immunogen The immunogen is a synthetic peptide directed towards the N-terminal region of Human HNF4A Complete Anti-HNF4A (ARP31946_P050) computational species homology data Tissue Tool Find tissues and cell lines supported by DNA array analysis to express HNF4A. Swissprot Id P41235 Protein Name Hepatocyte nuclear factor 4-alpha Publications Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20, 578-88 (2010). ChIP-Seq, ChIP, Human, Pig, Dog, Sheep, Horse, Rabbit, Rat, Guinea pig, Mouse, Bovine, Zebrafish 20219941 Faure, A. J. et al. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res. 22, 2163-75 (2012). WB, Human, Pig, Dog, Sheep, Horse, Rabbit, Rat, Guinea pig, Mouse, Bovine, Zebrafish 22780989 Protein Accession NP_000448 # Purification Affinity Purified RNA Seq Find tissues and cell lines supported by RNA-seq analysis to express HNF4A. Nucleotide NM_000457 Accession # Replacement Item This antibody may replace item sc-101059 from Santa Cruz Biotechnology. Conjugation ARP31946_P050-FITC Conjugated Options ARP31946_P050-HRP Conjugated ARP31946_P050-Biotin Conjugated CB Replacement sc-101059; sc-126960; sc-35573; sc-35574; sc-374229; sc-6556; sc-6557; sc-8987 Species Reactivity Cow, Dog, Guinea Pig, Horse, Human, Mouse, Rabbit, Rat, Sheep, Zebrafish Application WB Predicted Cow: 100%; Dog: 100%; Guinea Pig: 100%; Horse: 100%; Human: 100%; Mouse: Homology Based 100%; Rabbit: 100%; Rat: 100%; Sheep: 100%; Zebrafish: 93% on Immunogen Sequence Image 1: Human Lung Tumor Host: Rabbit Target Name: HNF4A Sample Tissue: Human Lung Tumor Antibody Dilution: 1.0ug/ml AVIVA SYSTEMS BIOLOGY manufactures and sells quality antibody products covering genome wide proteins. This product is for Research Use Only. Not for diagnostic, human, or veterinary use. Optimal conditions of its use should be determined by end users. 5754 Pacific Center Blvd., Suite 201 San Diego, CA 92121 USA | Tel: (858)552-6979 | [email protected] 2.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Genome-Wide Analysis of Androgen Receptor Binding and Gene Regulation in Two CWR22-Derived Prostate Cancer Cell Lines
    Endocrine-Related Cancer (2010) 17 857–873 Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines Honglin Chen1, Stephen J Libertini1,4, Michael George1, Satya Dandekar1, Clifford G Tepper 2, Bushra Al-Bataina1, Hsing-Jien Kung2,3, Paramita M Ghosh2,3 and Maria Mudryj1,4 1Department of Medical Microbiology and Immunology, University of California Davis, 3147 Tupper Hall, Davis, California 95616, USA 2Division of Basic Sciences, Department of Biochemistry and Molecular Medicine, Cancer Center and 3Department of Urology, University of California Davis, Sacramento, California 95817, USA 4Veterans Affairs Northern California Health Care System, Mather, California 95655, USA (Correspondence should be addressed to M Mudryj at Department of Medical Microbiology and Immunology, University of California, Davis; Email: [email protected]) Abstract Prostate carcinoma (CaP) is a heterogeneous multifocal disease where gene expression and regulation are altered not only with disease progression but also between metastatic lesions. The androgen receptor (AR) regulates the growth of metastatic CaPs; however, sensitivity to androgen ablation is short lived, yielding to emergence of castrate-resistant CaP (CRCaP). CRCaP prostate cancers continue to express the AR, a pivotal prostate regulator, but it is not known whether the AR targets similar or different genes in different castrate-resistant cells. In this study, we investigated AR binding and AR-dependent transcription in two related castrate-resistant cell lines derived from androgen-dependent CWR22-relapsed tumors: CWR22Rv1 (Rv1) and CWR-R1 (R1). Expression microarray analysis revealed that R1 and Rv1 cells had significantly different gene expression profiles individually and in response to androgen.
    [Show full text]
  • Uttrykking Final Ph[1].D THESIS TUYEN 27.10.06
    Nuclear Receptor Coregulators Role of Protein-Protein Interactions and cAMP/PKA Signaling Tuyen Thi Van Hoang Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen October 2006 2 TABLE OF CONTENTS SCIENTIFIC ENVIRONMENTS.............................................................................................. 5 ACKNOWLEDGEMENTS ....................................................................................................... 7 LIST OF PAPERS...................................................................................................................... 9 ABBREVIATIONS.................................................................................................................. 11 PREFACE ................................................................................................................................ 13 INTRODUCTION.................................................................................................................... 15 1. Nuclear receptors ........................................................................................................... 15 1.1. Functional and structural domains ............................................................................ 15 1.2. Subfamilies and activation mechanisms ................................................................... 15 1.3. Steroidogenic factor-1............................................................................................... 19 1.3.1. Functional and structural domains ....................................................................
    [Show full text]
  • Chain Gene Induced by GM-CSF Β Receptor Regulation of Human High-Affinity Ige Molecular Mechanisms for Transcriptional
    Molecular Mechanisms for Transcriptional Regulation of Human High-Affinity IgE Receptor β-Chain Gene Induced by GM-CSF This information is current as Kyoko Takahashi, Natsuko Hayashi, Shuichi Kaminogawa of September 23, 2021. and Chisei Ra J Immunol 2006; 177:4605-4611; ; doi: 10.4049/jimmunol.177.7.4605 http://www.jimmunol.org/content/177/7/4605 Downloaded from References This article cites 39 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/177/7/4605.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Molecular Mechanisms for Transcriptional Regulation of Human High-Affinity IgE Receptor ␤-Chain Gene Induced by GM-CSF1 Kyoko Takahashi,*† Natsuko Hayashi,*‡ Shuichi Kaminogawa,† and Chisei Ra2* The ␤-chain of the high-affinity receptor for IgE (Fc␧RI) plays an important role in regulating activation of Fc␧RI-expressing cells such as mast cells in allergic reactions.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen PNRC1 Product
    PrEST Antigen PNRC1 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen PNRC1 Product Number APrEST77609 Gene Description proline-rich nuclear receptor coactivator 1 Alternative Gene B4-2, PROL2, PRR2 Names Corresponding Anti-PNRC1 (HPA029839) Antibodies Description Recombinant protein fragment of Human PNRC1 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: QLVHGIHLYEQPKINRQKSKYNLPLTKITSAKRNENNFWQDSVSSDRIQK QEKKPFKNTENIKNSHLKKSAFLTEVSQKENYAGAKFSDPPSPSVLPK Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 29 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Molecular Interactions Underpinning the Phenotype of Hibernation in Mammals Matthew T
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb160606. doi:10.1242/jeb.160606 REVIEW Molecular interactions underpinning the phenotype of hibernation in mammals Matthew T. Andrews* ABSTRACT most mammals. This Review covers recent advances in the Mammals maintain a constant warm body temperature, facilitating a molecular biology of hibernation, with a focus on molecular wide variety of metabolic reactions. Mammals that hibernate have the interactions underpinning the hibernation phenotype. Specific – ability to slow their metabolism, which in turn reduces their body topics include the torpor arousal cycle, the role of small temperature and leads to a state of hypothermic torpor. For this molecules, changes in gene expression, cold-inducible RNA- metabolic rate reduction to occur on a whole-body scale, molecular binding proteins, the somatosensory system and emerging interactions that change the physiology of cells, tissues and organs information on hibernating primates. This new information not are required, resulting in a major departure from normal mammalian only is beginning to explain how natural hibernators survive homeostasis. The aim of this Review is to cover recent advances in the physiological extremes that would be lethal to most mammals, but molecular biology of mammalian hibernation, including the role of also identifies molecular mechanisms that may prove useful to small molecules, seasonal changes in gene expression, cold- human medicine. inducible RNA-binding proteins,
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Supplementary Information for the Crebbp Acetyltransferase Is A
    Supplementary Information for The Crebbp acetyltransferase is a haploinsufficient tumor suppressor in B cell lymphoma Jiyuan Zhang1, Sofija Vlasevska1, Victoria A. Wells1, Sarah Nataraj1, Antony B. Holmes1, Romain Duval1, Stefanie N. Meyer1, Tongwei Mo1, Katia Basso1,2, Paul K Brindle3, Shafinaz Hussein4, Riccardo Dalla-Favera1,2,5,6,7 and Laura Pasqualucci1,2,7* 1 Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA 2 Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA 3 Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 4 Department of Pathology and Laboratory Medicine, NorthWell Health, Staten Island University Hospital, Staten Island, New York, USA 5 Department of Genetics & Development, Columbia University, New York, NY, 10032, USA 6 Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA 7 Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA *Correspondence: [email protected] SI Guide Supplementary Figure S1. CREBBP binds to GC-specific super-enhancers Supplementary Figure S2. Crebbp and EP300 expression in the B cell lineage Supplementary Figure S3. GSEA of Crebbp-conditional knock-out GC B cells and human DZ vs LZ B cells Supplementary Figure S4. Analysis of GC B cell responses in Crebbpfl/fl Cγ1-Cre and CD19-Cre cohorts Supplementary Figure S5. Analysis of plasma cell differentiation in Crebbpfl/fl Cγ1-Cre and CD19-Cre cohorts Supplementary Figure S6. Distribution pattern of CREBBP mutations in FL and de novo DLBCL Supplementary Figure S7. Analysis of Crebbp conditional knock-out tumor cohorts Supplementary Table S1. Overlap between CREBBP bound regions and predicted super- enhancers in GC B cells Supplementary Table S2.
    [Show full text]
  • Integrative Clinical Sequencing in the Management of Refractory Or
    Supplementary Online Content Mody RJ, Wu Y-M, Lonigro RJ, et al. Integrative Clinical Sequencing in the Management of Children and Young Adults With Refractory or Relapsed CancerJAMA. doi:10.1001/jama.2015.10080. eAppendix. Supplementary appendix This supplementary material has been provided by the authors to give readers additional information about their work. © 2015 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/29/2021 SUPPLEMENTARY APPENDIX Use of Integrative Clinical Sequencing in the Management of Pediatric Cancer Patients *#Rajen J. Mody, M.B.B.S, M.S., *Yi-Mi Wu, Ph.D., Robert J. Lonigro, M.S., Xuhong Cao, M.S., Sameek Roychowdhury, M.D., Ph.D., Pankaj Vats, M.S., Kevin M. Frank, M.S., John R. Prensner, M.D., Ph.D., Irfan Asangani, Ph.D., Nallasivam Palanisamy Ph.D. , Raja M. Rabah, M.D., Jonathan R. Dillman, M.D., Laxmi Priya Kunju, M.D., Jessica Everett, M.S., Victoria M. Raymond, M.S., Yu Ning, M.S., Fengyun Su, Ph.D., Rui Wang, M.S., Elena M. Stoffel, M.D., Jeffrey W. Innis, M.D., Ph.D., J. Scott Roberts, Ph.D., Patricia L. Robertson, M.D., Gregory Yanik, M.D., Aghiad Chamdin, M.D., James A. Connelly, M.D., Sung Choi, M.D., Andrew C. Harris, M.D., Carrie Kitko, M.D., Rama Jasty Rao, M.D., John E. Levine, M.D., Valerie P. Castle, M.D., Raymond J. Hutchinson, M.D., Moshe Talpaz, M.D., ^Dan R. Robinson, Ph.D., and ^#Arul M. Chinnaiyan, M.D., Ph.D. CORRESPONDING AUTHOR (S): # Arul M.
    [Show full text]
  • Supplemental Digital Content (Sdc) Sdc, Materials
    SUPPLEMENTAL DIGITAL CONTENT (SDC) SDC, MATERIALS AND METHODS Animals This study used 9-12 week old male C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME). This study conformed to the National Institutes of Health guidelines and was conducted under animal protocols approved by the University of Virginia’s Institutional Animal Care and Use Committee. Murine DCD Lung Procedure Mice were anesthetized by isoflurane inhalation and euthanized by cervical dislocation followed by a 60-minute period of “no-touch” warm ischemia. Mice then underwent extended median sternotomy and midline cervical exposure followed by intubation for the initiation of mechanical ventilation at 120 strokes/minute with room air. The left atrium was vented via an atriotomy followed by infusion of the lungs with 3 mL 4°C Perfadex® solution (Vitrolife Inc., Denver, CO) supplemented with THAM Solution (Vitrolife, Kungsbacka, Sweden), estimating weight-based volume recommendations for pulmonary artery perfusion (140mL/kg) (1). The chest was then packed with ice and the trachea occluded by silk-suture tie at tidal volume (7µL/g body weight) prior to cold static preservation (CSP) for 60 minutes at 4°C. Mice were then randomized into three experimental groups: 1) CSP alone with no EVLP, 2) EVLP with Steen solution and 3) EVLP with Steen solution supplemented with the highly selective A2AR agonist, ATL1223 (30nM, Lewis and Clark Pharmaceuticals, Charlottesville, VA). Mice treated with ATL1223 during EVLP also received ATL1223 treatment (30nM) during the Perfadex flush prior to CSP whereas the EVLP group received vehicle (DMSO) during the flush. CSP lungs, which did not undergo EVLP, underwent immediate functional assessment after re-intubation as described below.
    [Show full text]
  • Whole Transcriptomic Expression Differences in EBV Immortalized Versus Primary B-Cells
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 12-2010 Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells Dolores Huberts College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Huberts, Dolores, "Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B- Cells" (2010). Undergraduate Honors Theses. Paper 347. https://scholarworks.wm.edu/honorstheses/347 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Biology from the College of William and Mary in Virginia By Dolores Huberts Accepted for Honors ________________________________________ Lizabeth A. Allison, Director ________________________________________ Matthew Wawersik ________________________________________ Drew LaMar ________________________________________ Beverly Sher Williamsburg, Virginia December 17, 2010 ABSTRACT The Epstein–Barr Virus (EBV) is a human gamma herpes virus that infects more than 90% of the human population worldwide. It is commonly known in the US as the cause of Infectious Mononucleosis, and around the world as the cause of nasopharyngeal carcinoma and malignant lymphomas such as non-Hodgkin lymphoma, endemic Burkett’s lymphoma and Hodgkin lymphoma. Additionally, the EBV is used to immortalize cells to create cell lines for in-vitro studies.
    [Show full text]