Standardizing the Nomenclature of Martian Impact Crater Ejecta Morphologies

Total Page:16

File Type:pdf, Size:1020Kb

Standardizing the Nomenclature of Martian Impact Crater Ejecta Morphologies University of Central Florida STARS Faculty Bibliography 2000s Faculty Bibliography 1-1-2000 Standardizing the nomenclature of Martian impact crater ejecta morphologies Nadine G. Barlow University of Central Florida Joseph M. Boyce François M. Costard Robert A. Craddock James B. Garvin See next page for additional authors Find similar works at: https://stars.library.ucf.edu/facultybib2000 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Barlow, Nadine G.; Boyce, Joseph M.; Costard, François M.; Craddock, Robert A.; Garvin, James B.; Sakimoto, Susan E. H.; Kuzmin, Ruslan O.; Roddy, David J.; and Soderblom, Laurence A., "Standardizing the nomenclature of Martian impact crater ejecta morphologies" (2000). Faculty Bibliography 2000s. 2431. https://stars.library.ucf.edu/facultybib2000/2431 Authors Nadine G. Barlow, Joseph M. Boyce, François M. Costard, Robert A. Craddock, James B. Garvin, Susan E. H. Sakimoto, Ruslan O. Kuzmin, David J. Roddy, and Laurence A. Soderblom This article is available at STARS: https://stars.library.ucf.edu/facultybib2000/2431 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. Ell, PAGES 26,733-26,738,NOVEMBER 25, 2000 Standardizing the nomenclature of Martian impact crater ejeeta morphologies NadineG. Barlow •, JosephM. Boyce2,Francois M. Costard3,Robert A. Craddock4, JamesB. Garvins, Susan E. H. Sakimotos,Ruslan O. Kuzmin6,David J. Roddy 7, and LaurenceA. Soderblom7 Abstract. The Mars CraterMorphology Consortium recommends the useof a standardized nomenclaturesystem when discussing Martian impact crater ejecta morphologies. The system utilizesnongenetic descriptors to identifythe variousejecta morphologies seen on Mars. This systemis designedto facilitatecommunication and collaborationbetween researchers. Crater morphologydatabases will be archivedthrough the U.S. GeologicalSurvey in Flagstaff,where a comprehensivecatalog of Martian cratermorphologic information will be maintained. 1. Introduction andFrawley, 1998; Gamin et al., 1999],and the generalgeologic history of the planet [Soderblomet al., 1974; Tanaka, 1986; Fresh Martian impact craters are typically surroundedby Barlow, 1988; Hartmann, 1999]. ejectastructures that differ in morphologyfrom the radial ejecta This articledescribes a systemof nomenclaturerecommended patternsseen around lunar and Mercurian craters. The Martian by the Mars Crater MorphologyConsortium for use when ejectastructures are typically composedof one or more layersof describing Martian impact structures. The Consortium, material, commonly displayed in a lobed pattern. These composedof this article'sauthors, met at the U.S. Geological structureshave been described by a number of adjectives, Surveyin Flagstaff,Arizona, in May 1998 and July 1999 to including fluidized, lobate, rampart, splosh, and flower. discussand developthese recommendations. The Consortium Although originally thoughtto be the result of wind erosionon membershave been actively involvedin utilizing Martian impact the basisof Mariner 9 image analysis[McCauley, 1973; Amidson cratersin a numberof studiesover the past20 years,and several et al., 1976], Viking Orbiter imagesrevealed that thesestructures haveproduced catalogs of cratercharacteristics. These databases were distributedglobally and likely the resultof emplacementby contain information that is often complementaryto but not fluidization processes,either from impact into and vaporization containedin the other crater catalogs. One of the goalsof the of subsurfacevolatiles [Cart et al., 1977; Wohletzand Sheridan, Mars CraterMorphology Consortium is to combinethe existing 1983] or by ejecta entrainmentby the thin Martian atmosphere crater databasesinto one system that can be queried for [Schultz and Gault, 1979; Barnouin-Jha and Schultz, 1998]. informationon crater location,size, shape,preservational state, Now as more details about the ejecta morphologies and ejectaand interiorstructures, and morphometriccharacteristics morphometriesbecome available becauseof the Mars Global (craterdepth, rim height,central peak height and width, central Surveyorand upcomingMars Surveyormissions, it is apparent pit diameterand depth, ejecta extent and sinuosity, etc.). Because that a standardizedsystem of nomenclatureis neededto facilitate of the variety of classificationsystems, many using different the exchangeof data between researcherswho compile crater terminologyto describethe samemorphology, the Consortium data for use in studies on erosional history [Craddock and agreedthat the first courseof actionwas to standardizethe Maxwell, 1990, 1993; Craddock et al., 1997; Grant and Schultz, nomenclaturefor cratermorphologic features. The first features 1990, 1993; Barlow, 1995; Hartmann and Esquerdo, 1999], to be standardizedare the ejectamorphologies. implicationsfor subsurfacevolatiles [Cintala and Mouginis- Mark, 1980; Mouginis-Mark, 1981, 1987; Kuzmin et al., 1988; Costard, 1989; Barlow and Bradley, 1990; Barlow, 1994; Boyce 2. Recommendations and Roddy, 1997; Costard and Gosset, 1998; Demura and Kurita, 1998], cratermorphometries and formation[Roddy, 1977; Martian ejecta blankets have been classified into many Cintala et al., 1976; Wood et al., 1978; Melosh, 1989; Gamin differentgroups because of the rangeof morphologiesidentified from the Viking Orbiter imagery. However, in general,the •Departmentof Physics, University of CentralFlorida, Orlando. morphologiescan be dividedinto threemain groups: 2Officeof SpaceScience, NASA Headquarters, Washington, D.C. 1. Layered ejecta patterns,where the ejecta blanket is 3CNRS/Laboratoirede GeologieDynamique de la Terre et des composedof one or more completeor partialsheets of material Planetes,Orsay, France. surroundingthe crater, appear to have been emplacedby 4Centerfor Earthand PlanetaryStudies, National Air and Space fluidizationprocesses, although some structures show evidence Museum,Smithsonian Institution, Washington, D.C. 5NASAGoddard Space Flight Center, Greenbelt, Maryland. of subsequenteolian erosion. 6VernadskyInstitute, Russian Academy of Sciences,Moscow, Russia. 2. Radial ejecta blankets,which are similar to the ejecta 7U.S.Geological Survey, Flagstaff, Arizona. patternsaround lunar and Mercuriancraters, are believedto be emplaced by secondarymaterial ejected along ballistic Copyright2000 by the AmericanGeophysical Union. trajectories. Papernumber 2000JE001258. 3. Combination structuresshow both layered and radial 0148-0227/00/2000JE001258509.00 patterns. 26,733 26,734 BARLOW ET AL.: MARTIAN IMPACT CRATER NOMENCLATURE Table 1. Correlationof New MorphologyTerminology With PreviousNomenclature Nomenclature Reference Layered Ejecta Structures Pedestal(P) Pedestal McCauley [ 1973] Pedestal Amidsonet al. [ 1976] Pedestal Head and Roth [1976] Mound Johansen[1979] Lump Johansen[ 1979] Single-layerpancake (SLEPC/SLEPS) Polar Johansen[ 1979] Type 6 Mouginis-Mark[ 1979] SS Horner and Greeley[ 1987] Type 3 Costard[1989] Pancake Barlow and Bradley [ 1990] Single-layerrampart (SLERC/SLERS) Type 1 Mouginis-Mark[ 1979] Class4 Blasiusand Cutts [1980] SR Horner and Greeley[ 1987] Type 1/flower Costard[1989] Singlelobe Barlowand Bradley[ 1990] Double-layerrampart (DLERC/DLERS) Composite Johansen[ 1979] Type 2 Mouginis-Mark[ 1979] Class3 Blasiusand Cutts [1980] D Horner and Greeley[ 1987] Type 2/rampart Costard[1989] Double lobe Barlow and Bradley [1990] Multiple-layer rampart(MLERS) Flower Johansen[1979] Type 3 Mouginis-Mark[ 1979] Class2/flower Blasiusand Cutts [ 1980] MR Horner and Greeley[1987] Multiple lobe Barlowand Bradley [1990] Radial Morphologies Radial (SLER) Lunar riohansen[1979] Class 1/lunar Blasiusand Cutts [1980] Type 4 Mouginis-Mark[ 1979] Radial Barlow and Bradley [1990] CombinationMorphologies (e.g., SLERSR) Transitional riohansen[ 1979] Type 5 Mouginis-Mark[ 1979] Diverse Barlow and Bradley [ 1990] Table 1 providesa listing of someof the terminologythat has 3. Layered ejecta craterssurrounded by three or more beenused to describecraters in thesebasic groups. completeor partiallayers of materialshall be called"multiple- The Mars Crater Morphology Consortiumrecommends the layer ejecta"(MLE) (Figure l d). following changesin nomenclature: 4. The single-layer, double-layer,and multiple-layer First, layered ejecta patternsthat have undergonesubstantial categoriesare further modified by termsdescribing the shapeof erosionowing to eolian activity, resultingin the craterand ejecta the ejectaterminus. Those layered ejecta patterns terminated by being perchedabove the surroundingterrain, shall be referredto a distalridge or rampartshall be modifiedby theterm "rampart" as "pedestalcraters" (Pd). The ejectablanket of a pedestalcrater (R) (i.e., Figure l d). Hence a single-layeredejecta pattern is typified by a sharpedge (no distal ridge) that dropsoff to the terminatedin a distalridge would be calleda "single-layerejecta lower elevationof the surroundingterrain (Figure l a). rampart." Layeredejecta patterns that terminatein a concave Second, other layered ejecta patternsshall be referred to as slopewill bemodified by theterm "pancake" (P) (Figure1 e). "layeredejecta craters" (LE). 5. The rampartand pancake terms are further modified by the 1. Layered ejectacraters surrounded by only a singlelayer of adjectives"sinuous" (S) (i.e., Figurel d)
Recommended publications
  • Poona (Crater)
    Poona (crater) Poona (crater), impact crater on Mars. Other[]. Poona Pact, an agreement between depressed classes and Hindus. Poona, a competitive sport from which badminton has its origin. See also[]. Pune (disambiguation). Poon (disambiguation). All pages with a title containing Poona. Disambiguation page providing links to articles with similar titles. This disambiguation page lists articles associated with the title Poona. [crater] Poona Crater is an impact crater in Chryse Planitia in the Lunae Palus quadrangle of Mars, located at 23.93° N and 52.32° W. It is 19.87 km in diameter and was named after the city of Pune, Maharashtra, India. Found on http://en.wikipedia.org/wiki/Poona_(crater). Poona. Former spelling of Pune, a city in India; after independence in 1947 the form Poona was gradually superseded by Pune Found on http://www.talktalk.co.uk/reference/encyclopaedia/hutchinson/m0012523.html. Poona. Poona is an impact crater in Chryse Planitia in the Lunae Palus quadrangle of Mars, located at 23.93° N and 52.32° W. It measures 19.87 kilometers in diameter and was named after the city of Pune, Maharashtra, India.[1]. References[edit]. ^ "Poona (crater)". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program. Poona crater. 52°W. 24°N. [79] Poona Crater. This crater is close to Kasei Vallis, the edge of which is marked by an escarpment in the northwest corner of the image. The ejecta have a marked radial pattern and no outer rampart. [22A54; 24°N, 52°W]. [80]. Pedestal Craters. Almost all the craters in this area are situated within a pedestal or platform that stands above the surrounding plains.
    [Show full text]
  • BINGO Turning Ibralh Tht W6stk6r
    SSm • • \ SATURDAY, DECEMBER I, IMS ATdrsfd D d lly Clrodstlon Tht W6stk6r fOUKTEEN iBatirbrjalrr E w n ittg E m to For the MonUi ed Nevember, 1642 Fim aet ef V. S. Weathw Bnrena 7,814 doattaned awdemtely eeU to- The Harvard Road Bridge Club Youths Fined met last night at the home of Mr. Firemen Here 1,000 TREES ALL SI^ Mtontar ef the AodH , turning Ibralh ■l«ht. About Town and Mra. Robert Meintoah for an­ tleard Along Main Street Bnrana ef dretonttona other session of contract Four ta­ In Town Court \ Manchester-—A City o f V U it t g e Charm I » . JobuKm, who h w 45 bles were in play. High scores for Given fcvite And on Some of Manchester** Side Street*, Too L . - CHRISTMAS TREES e(hr oonatructlon In the the evening were made by Mrs. • (FOURTEEN PAGES) PRICE THREE < itTMt ••ctloo. hM » Malcolm Deacon and Perry Pratt Were Involved in Brawl ^ WHOLESALE— RETAIL AivwrtMag am Vaga U ) MANCHESTER, CONN., MONDAY, DECEMBER 7, 1942 _ nbout muSy to occupy. Expert Fire Fighter That lawyer from New Brltaintcomroutera this bus, which is VOL. LXIL, NO. 57 ^ a n to bo offend tor aole. All n ie Asbury group of the South who objected to havLig his client usually loaded to capacity every In North End; Two Grown Locally— Cut as Sold ai th» eoatuaOy type. They Methodist W. S. C. S. will not Frotn London to Tell seated In the so-called prisoners’ morning, was assigned a tripper. I bo flneiieod tbrougb FHA meet for iU Christmas party on box in Town court the other day It is supposed to leave Rockville at Others Discharged.
    [Show full text]
  • Morphology and Morphometry of Double Layered Ejecta Craters on Mars
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository August 2015 Morphology and Morphometry of Double Layered Ejecta Craters on Mars Ryan Schwegman The University of Western Ontario Supervisor Dr. Gordon Osinski The University of Western Ontario Joint Supervisor Dr. Livio Tornabene The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Ryan Schwegman 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Schwegman, Ryan, "Morphology and Morphometry of Double Layered Ejecta Craters on Mars" (2015). Electronic Thesis and Dissertation Repository. 3074. https://ir.lib.uwo.ca/etd/3074 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. MORPHOLOGY AND MORPHOMETRY OF DOUBLE LAYERED EJECTA CRATERS ON MARS (Thesis format: Integrated Article) by Ryan Schwegman Graduate Program in Geology: Planetary Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Ryan Schwegman 2015 Abstract Double layered ejecta (DLE) craters display two distinct layers of ejecta that appear to have been emplaced as a mobile, ground-hugging flow. While volatile content within the target, atmosphere, or some combination of the two is generally considered a major variable enhancing the mobility of ejecta, the presence of unconsolidated surface materials may also have some effect.
    [Show full text]
  • Gemstones and Geosciences in Space and Time Digital Maps to the “Chessboard Classification Scheme of Mineral Deposits”
    Earth-Science Reviews 127 (2013) 262–299 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Gemstones and geosciences in space and time Digital maps to the “Chessboard classification scheme of mineral deposits” Harald G. Dill a,b,⁎,BertholdWeberc,1 a Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany b Institute of Geosciences — Gem-Materials Research and Economic Geology, Johannes-Gutenberg-University, Becherweg 21, D-55099 Mainz, Germany c Bürgermeister-Knorr Str. 8, D-92637 Weiden i.d.OPf., Germany article info abstract Article history: The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite Received 27 April 2012 subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineral- Accepted 16 July 2013 ized sites. The various maps were designed based on the “Chessboard classification scheme of mineral deposits” Available online 25 July 2013 proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories Keywords: were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin–tungsten, beryllium, Gemstones fl Country lithium, zinc, calcium, boron, uorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, Geology amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite–andalusite, corundum–spinel−diaspore, Geomorphology diamond, vermiculite–pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems Digital maps by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic Chessboard classification scheme units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space.
    [Show full text]
  • Terrestrial Fluids, Earthquakes and Volcanoes: the Hiroshi Wakita Volume II
    Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II Edited by Nemesio M. Pérez Sergio Gurrieri Chi-Yu King Yuri Taran Birkhäuser Basel · Boston · Berlin Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 164 (2007) No. 12 Editors: Nemesio M. Pérez Sergio Gurrieri Environmental Research Division Istituto Nazionale di Geofisica e Instituto Tecnológico y de Energias Vulcanologia Renovables Sezione di Palermo Polígono Industrial de Granadilla s/n V. Ugo La Malfa, 153 38611 Granadilla, Tenerife 90146 Palermo Canary Islands Italy Spain e-mail: [email protected] e-mail: [email protected] Yuri Taran Chi-Yu King Volcanology Department Earthquake Prediction Research, Inc Institute of Geophysics 381 Hawthorne Ave. UNAM Los Altos, CA 94022 3000, Av. Universidad USA Mexico D.F., 04510 e-mail: [email protected] Mexico e-mail: taran@geofisica.unam.mx Library of Congress Control Number: 2006043001 Bibliographic information published by Die Deutsche Bibliothek: Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de> ISBN 978-3-7643-8719-8 Birkhäuser Verlag AG, Basel · Boston · Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustra- tions, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp.
    [Show full text]
  • Josefina S. Raborar Deann B
    My Life Story Josefina S. Raborar DeAnn B. Holt, Storykeeper Acknowledgements The Ethnic Life Stories Project continues to emulate the vibrant diversity of the Springfield community. So much is owed to the many individuals from Drury University-Diversity Center, Southwest Missouri State University, Forest Institute, Springfield Public School System, Springfield/Greene County Libraries, and Southwest Missouri Office on Aging who bestowed their talents, their words of encouragement, their generosity of time and contributions in support of this unique opportunity to enrich our community. The resolve and commitment of both the Story Tellers and Story Keepers fashioned the integral foundation of this creative accomplishment. We express our tremendous admiration to the Story Tellers who shared their private and innermost thoughts and memories; some suffering extreme hard-ship and chaos, disappointment and grief before arriving here and achieving the great task of adjusting and assimilating into a different culture. We recognize your work and diligence in your life achievement, not only by keeping your families together, but by sharing, contributing and at the same time enriching our lives and community. We salute you! Special acknowledgement to: Rosalina Hollinger, Editing and layout design Mark Hollinger, Photography Jim Coomb, Mapmaker Idell Lewis, Editing and revision Angie Keller, Susy Mostrom, Teresa Van Slyke, and Sean Kimbell, Translation Lee Lowder, Data Transfer and Storage Heartfelt thanks to Kay Lowder who was responsible for organization and assembly of the stories. Jim Mauldin Ethnic Life Stories Project Coordinator. The Ethnic Life Stories Project.... .giving the Springfield community a window to its diversity through the life stories of ethnic elders.
    [Show full text]
  • PARASITIC on MEGACHIROPTERAN BATS X
    Pacific Insects Monograph 28: 213-243 20 June 1971 REVIEW OF THE STREBLIDAE (Diptera) PARASITIC ON MEGACHIROPTERAN BATS x By T. C. Maa2 Abstract. Of the 16 streblid species previously recorded as parasites of the Megachiroptera, only 6 are here considered to be correctly so associated. Five of these 6 species are re-assigned to a new genus and only 1 is retained in the genus Brachytarsina (^Nycteribosca). These 2 genera are each divided into 2 subgenera and their host relationships, distributional patterns and evolutionary trends are discussed. Earlier records of the species are critically reviewed and are incorporated with new data which are based on some 650 specimens. The new taxa described are Megastrebla, n. gen. (type N. gigantea Speiser); Aoroura, n. subgen, (type N. nigriceps Jobling); Psilacris, n. subgen, (type N. longiarista Jobling); M. (A) limbooliati, n. sp. (Malaya, Borneo); M. (M.) gigantea kaluzvawae, n. ssp. (Fergusson I.); M. (M) gigantea salomonis, n. ssp. (Solomon Is.); M. (M) parvior papuae, n. ssp. (New Guinea). Streblid batflies are rarely found on the suborder Megachiroptera, composed of the single family Pteropodidae, whose members are generally referred to as fruit bats. Only 16 species have been recorded on these bats. A closer examination of the pub­ lished records clearly indicates that 10 of these 16 species (see Appendix II) should not be considered true parasites of the Megachiroptera; available data support the con­ cept that no streblids normally breed simultaneously on both the Megachiroptera and Microchiroptera, and among the 39 genera of the former suborder, only those which usually roost in partially illuminated caves and rock-crevices serve as normal breeding hosts of Streblidae.
    [Show full text]
  • Sulfur-Poor Intense Acid Hydrothermal Alteration: a Distinctive Hydrothermal Environment ⇑ Douglas C
    Ore Geology Reviews 88 (2017) 174–187 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeo Sulfur-poor intense acid hydrothermal alteration: A distinctive hydrothermal environment ⇑ Douglas C. Kreiner , Mark D. Barton Department of Geosciences and Lowell Institute for Mineral Resources, University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: A fundamentally distinct, sulfide-poor variant of intense acid (advanced argillic) alteration occurs at the Received 8 June 2016 highest structural levels in iron oxide-rich hydrothermal systems. Understanding the mineralogy, and Received in revised form 16 February 2017 geochemical conditions of formation in these sulfide-poor mineral assemblages have both genetic and Accepted 20 April 2017 environmental implications. New field observations and compilation of global occurrences of low- Available online 23 April 2017 sulfur advanced argillic alteration demonstrates that in common with the sulfide-rich variants of advanced argillic alteration, sulfide-poor examples exhibit nearly complete removal of alkalis, leaving Keywords: a residuum of aluminum-silicate + quartz. In contrast, the sulfur-poor variants lack the abundant pyri- Iron-oxide copper gold te ± other sulfides, hypogene alunite, Al-leached rocks (residual ‘‘vuggy” quartz) as well as the Au-Cu- IOCG Advanced argillic Ag ± As-rich mineralization of some sulfur-rich occurrences. Associated mineralization is dominated by Low-sulfur advanced argillic magnetite and/or hematite with accessory elements such as Cu, Au, REE, and P. These observations pre- sented here indicate there must be distinct geologic processes that result in the formation of low-sulfur advanced argillic styles of alteration. Hydrolysis of magmatic SO2 to sulfuric acid is the most commonly recognized mechanism for generat- ing hypogene advanced argillic alteration, but is not requisite for its formation.
    [Show full text]
  • Russell Priest Ship Catalog
    Russell Priest Catalogue Name Type Company Flag YOB Tonnage Desc. Colour B/W 1ST LT BALDOMERO LOPEZ US URR USN USA 1985 40846 GRT 50 LET SSSR GRF 1973 13518 GRT A,S,MAYNE DRG MELBOUR AUS A.D.GEOPOTES DSH VOLKER D GBR 1972 4122 GRT A.D.McKENZIE DBD MELBOUR AUS GRT A.HAZER BBU 1978 25635 GRT A.M.VELLA DCH PORT OF AUS 1972 4122 GRT A.P.MOLLER TTA A.P.MOLL DIS 1984 28010 GRT A.P.MOLLER TTA A.P.MOLL DNK 1966 52673 GRT AAGTEKERK GGC UNITED N NLD 1943 8149 GRT AALSMEERGRACHT GGC SPLIETHO NLD 1992 7949 GRT AALTJE-JACOBA GGC WAGENBO 1995 1576 GRT AARO GGC ELLERMA GBR 1960 2468 GRT AASFJORD BBU TORKELSE NIS 1978 3086 GRT ABADESA TTA HOULDER GBR 1962 13571 GRT ABAKAN TTA 1971 14106 GRT ABBEKERK GGC UNITED N NLD 1946 8336 GRT ABBEYDALE TTA RFA GBR 1937 8299 GRT ABDALLAH BNOU YASSINE GRF SOCIETE MAR 1978 3086 GRT ABDOUN DISCOVERY TTA 1977 45587 GRT ABEL TASMAN GGC H.C.SLEIG AUS 1957 2681 GRT ABEL TASMAN MPR TT LINE AUS 1975 19212 GRT ABEL TASMAN GGC H.C.SLEIG AUS 1916 2053 GRT ABERDEEN TTA CHEVRON BHS 1996 47274 GRT ABERDEEN MPR G.THOMPS GBR 1881 3684 GRT ABERSEA GGC JONES BR AUS 1913 818 GRT ABIDA TTA SHELL TA NLD 1958 12226 GRT ABILITY GGC EVERARD GBR 1943 881 GRT ABINSI MPR ELDER DE GBR 1908 6327 GRT ABITIBI CLAIBORNE GGC 1986 7580 GRT ABITIBI ORINOCO GGC 1986 7580 GRT ABLE GENERAL GGC 1985 4337 GRT ABLE REEFER GRF SNG 1961 2683 GRT ABOSSO MPR ELDER DE GBR 1935 11329 GRT ABRAHAM LINCOLN GGC US GOVER USA 1919 7660 GRT ABRAHAM LINCOLN USS (CVN7 CVN USN USA 1989 102000 DISP ABRAM SCHULTE TTA SCHULTE CYP 2004 41503 GRT ABSIRTO GGC ITA 1943 7176 GRT ABU DHABI UCC 1998 48154 GRT ABU EGILA GGC EGY 1984 10022 GRT ABU ZEMNIA URR 1983 10022 GRT ABUJA GGC 1995 5999 GRT Thursday, 31 January 2013 Page 1 of 449 Name Type Company Flag YOB Tonnage Desc.
    [Show full text]
  • Ndex to Geophysical \Bstracts 184-187 .961
    ndex to Geophysical \bstracts 184-187 .961 JAMES W. CLARKE, DOROTHY B. VITALIANO, VIRGINIA S. NEUSCHEL, and others EOLOGICAL SURVEY BULLETIN 1146-E 'bstracts of current literature ~rtaining to the physics of e solid earth and to !ophysical exploration ~ITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Price 40 cents (single copy). Subscription price: $1.75 a year; 50 cents additional for forei~n mailing. Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget (June 23, 1960). INDEX TO GEOPHYSICAL ABSTRACTS 184-187, 1961 By James W. Clarke and others AUTHOR INDEX A Abstract Abdullayev, R. N. See Afanas'yev, G. D 185-56 Academy of Sciences of the U.S.S.R. First photographs of the reverse sic;le of the moon------------------------------------------------------------------ 186-111 Adachi, Ryuzo. On the magnification of the record of a vibration by an electro­ magnetic-type transducer and a galvanometer-----------------------------­ 186-279 Adadurov, G. A., Balashov, D. B., and Dremin, A. N. Research on volume compressibility of marble under high pressure----'1"-----------------------­ 186-595 Adamiya, Sh. A. Age of the "young" granites of the Khrami crystalline massif-­ 187-43 Adams, J. A. S., Osmond, J. K., Edwards, George, and Henle, W. Absolute dating of the Middle Ordovician------------------------------------------­ 184-29 Adams, W. M. , and Allen, D. C. Reading seismograms with digital computers - 186-203 Adams, W.
    [Show full text]
  • Effect of Volatiles and Target Lithology on the Generation and Emplacement of Impact Crater Fill and Ejecta Deposits on Mars
    Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars Item Type Proceedings; text Authors Osinski, Gordon R. Citation Osinski, G. R. (2006). Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars. Meteoritics & Planetary Science, 41(10), 1571-1586. DOI 10.1111/j.1945-5100.2006.tb00436.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 26/09/2021 23:08:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656199 Meteoritics & Planetary Science 41, Nr 10, 1571–1586 (2006) Abstract available online at http://meteoritics.org Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars Gordon R. OSINSKI Canadian Space Agency, 6767 Route de l’Aeroport, Saint-Hubert, Quebec, J3Y 8Y9, Canada E-mail: [email protected] (Received 15 October 2005; revision accepted 15 March 2006) Abstract–Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground-truth data as to the role of volatiles and an atmosphere on the impact-cratering process. Recent advancements, based on studies of several well-preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact-cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile-rich targets than previously thought, so impact-melt rocks, melt-bearing breccias, and glasses should be common on Mars.
    [Show full text]
  • Ebook < Impact Craters on Mars # Download
    7QJ1F2HIVR # Impact craters on Mars « Doc Impact craters on Mars By - Reference Series Books LLC Mrz 2012, 2012. Taschenbuch. Book Condition: Neu. 254x192x10 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 50. Chapters: List of craters on Mars: A-L, List of craters on Mars: M-Z, Ross Crater, Hellas Planitia, Victoria, Endurance, Eberswalde, Eagle, Endeavour, Gusev, Mariner, Hale, Tooting, Zunil, Yuty, Miyamoto, Holden, Oudemans, Lyot, Becquerel, Aram Chaos, Nicholson, Columbus, Henry, Erebus, Schiaparelli, Jezero, Bonneville, Gale, Rampart crater, Ptolemaeus, Nereus, Zumba, Huygens, Moreux, Galle, Antoniadi, Vostok, Wislicenus, Penticton, Russell, Tikhonravov, Newton, Dinorwic, Airy-0, Mojave, Virrat, Vernal, Koga, Secchi, Pedestal crater, Beagle, List of catenae on Mars, Santa Maria, Denning, Caxias, Sripur, Llanesco, Tugaske, Heimdal, Nhill, Beer, Brashear Crater, Cassini, Mädler, Terby, Vishniac, Asimov, Emma Dean, Iazu, Lomonosov, Fram, Lowell, Ritchey, Dawes, Atlantis basin, Bouguer Crater, Hutton, Reuyl, Porter, Molesworth, Cerulli, Heinlein, Lockyer, Kepler, Kunowsky, Milankovic, Korolev, Canso, Herschel, Escalante, Proctor, Davies, Boeddicker, Flaugergues, Persbo, Crivitz, Saheki, Crommlin, Sibu, Bernard, Gold, Kinkora, Trouvelot, Orson Welles, Dromore, Philips, Tractus Catena, Lod, Bok, Stokes, Pickering, Eddie, Curie, Bonestell, Hartwig, Schaeberle, Bond, Pettit, Fesenkov, Púnsk, Dejnev, Maunder, Mohawk, Green, Tycho Brahe, Arandas, Pangboche, Arago, Semeykin, Pasteur, Rabe, Sagan, Thira, Gilbert, Arkhangelsky, Burroughs, Kaiser, Spallanzani, Galdakao, Baltisk, Bacolor, Timbuktu,... READ ONLINE [ 7.66 MB ] Reviews If you need to adding benefit, a must buy book. Better then never, though i am quite late in start reading this one. I discovered this publication from my i and dad advised this pdf to find out. -- Mrs. Glenda Rodriguez A brand new e-book with a new viewpoint.
    [Show full text]