In Silico Studies of Inhibitors of Dihydrofolate Reductase And

Total Page:16

File Type:pdf, Size:1020Kb

In Silico Studies of Inhibitors of Dihydrofolate Reductase And Archana Moon*et al. /International Journal of Pharmacy & Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com IN SILICO STUDIES OF INHIBITORS OF DIHYDROFOLATE REDUCTASE AND DIHYDROPTEROATE SYNTHASE OF E.COLI Archana Moon1, Deeba Khan2, Pranjali Gajbhiye3 & Monali Jariya4 1,2,3&4 University Department of Biochemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur -440033. Email: [email protected] Received on: 10-02-2017 Accepted on: 22-03-2017 Abstract: In the past two decades, antibiotic resistance has become an increasingly severe health problem. Bacterial infections caused by resistant strains are problematic in numerous hospitals around the world, especially in patients compromised by age, illness, and treated with immune-suppressant drugs. Antibiotics have a distinct mechanism of action capable of modifying microbial metabolism and physiological processes such as translation, DNA replication and cell wall biosynthesis. In this context, it is essential to increase the understanding of resistance mechanisms in order to develop drugs with potential activity against these pathogens. Escherichia coli is the most common causative agent of urinary tract infection (UTI), and diagnosing this infection usually relies on bacteriologic methods. Urinary tract infection (UTI) is the second most common bacterial infection after respiratory tract infection. Approximately 75-95% of UTIs are caused by Escherichia coli. Sulfonamides are competitive inhibitors of dihydropteroate synthase, the bacterial enzyme responsible for the incorporation of para-aminobenzoic acid (PABA) into dihydropteroic acid, the immediate precursor of folic acid. Trimethoprim exerts a synergistic effect with sulfonamides. It is a potent and selective competitive inhibitor of microbial dihydrofolate reductase, the enzyme that reduces dihydrofolate to tetrahydrofolate. Docking studies are molecular modelling studies aimed at finding a proper fit between ligand and its binding site. The present paper deals with studies to corrobarate the microbial and molecular studies to treat MDR resistant bacterial infections. Autodock Suite, version 1.5 6rC2 for Docking has been utilized in this study. Keywords: Dihydrofolate reductase(DHFR), Dihydropteroate synthase (DHPS), Docking, E.coli, Multidrug resistant(MDR). IJPT| April-2017| Vol. 9 | Issue No.1 | 28816-28829 Page 28816 Archana Moon*et al. /International Journal of Pharmacy & Technology Introduction: UTI is a serious health problem affecting millions of people each year. Infections of the urinary tract are the second most common type of infection. These are one of the most common bacterial infections affecting humans throughout their lifespan. These infections are more common in females than in males (1). It is caused by Gram-negative bacteria such as Escherichia coli, Klebsiella species, Enterobacter species, Proteus species and Gram-positive bacteria like Enterococcus species, and Staphylococcus saprophyticus. Studies from various parts of India have shown occurrence of high rates of antimicrobial resistance among E coli. The resistance rates of uropathogenic E. coli to various antibiotics such as beta- lactams (57.4%), co-trimoxazole (48.5%), quinolones (74.5%), gentamicin (58.2%), amikacin (33.4%), cefuroxime (56%), nalidixic acid (77.7%) have been reported (2). UTI due to multi drug resistant (MDR) E. coli increases the cost of treatment, morbidity and mortality especially in developing countries like India (2). The infection caused by MDR bacteria leads to limited treatment options (3). Antibiotic resistance is a worldwide problem threatening the ability to treat infections (4). Despite advancements of higher generations of antibiotics, these antibacterial agents have not been up to the mark in eradicating these infectious diseases. One of the possible reasons responsible for this decline in therapeutic control of the disease is antibiotic resistance. The MDR bacteria due to continued mismanaged selective pressure have been credited for being responsible for genetic response to antibacterial therapy (5). Resistance in Gram-negative bacteria has been increasing, particularly over the last 6 years. Many of the isolates producing these enzymes are also resistant to trimethoprim, quinolones and aminoglycosides. Novel combinations of antibiotics are being used in the community and broad-spectrum agents such as carbapenems are being used increasingly as empirical treatment for severe infections (6). Microorganisms use various mechanisms to develop drug resistance, such as recombination of foreign DNA in bacterial chromosome, horizontal gene transfer and alteration in genetic material (7). The folate metabolic pathway leads to synthesis of required precursors for cellular function and contains a critical node, dihydrofolate reductase (DHFR), which is shared between prokaryotes and eukaryotes. The DHFR enzyme is currently targeted by methotrexate in anti-cancer therapies, by trimethoprim for antibacterial uses, and by pyrimethamine for anti-protozoal applications. An additional anti-folate target is dihyropteroate synthase (DHPS), which is unique to prokaryotes as they cannot acquire folate through dietary means. It has been demonstrated as a primary target for the longest standing antibiotic class, the sulfonamides, which act synergistically with DHFR inhibitors. IJPT| April-2017| Vol. 9 | Issue No.1 | 28816-28829 Page 28817 Archana Moon*et al. /International Journal of Pharmacy & Technology Investigations have revealed most DHPS enzymes possess the ability to utilize sulfa drugs metabolically, producing alternate products that presumably inhibit downstream enzymes requiring the produced dihydropteroate. These inhibitors are also likely to interact with the enzymatic neighbors in the folate pathway that bind products of the DHFR or DHPS enzymes and/or substrates of similar substructure (8) Fig (1). Commonly used sulfa drug is co-trimoxazole, an association of two antifolate agents, sulfamethoxazole and trimethoprim (9). Dihydrofolate reductase (DHFR) is a ubiquitous enzyme present in almost all eukaryotic and prokaryotic cells (11). Inhibition of DHFR results in a depletion of the reduced folate pool, inhibition of RNA and DNA synthesis, and cell death. For this reason, DHFR has been a critically important therapeutic drug target. DHFR inhibitors targeting the FH2 binding site have been used in the treatment of cancer, autoimmune diseases and bacterial and fungal infections (10). Most microorganisms must synthesize folate denovo since they lack the active transport system of higher vertebrate cells that allows these organisms to use dietary folates. DHPS (Gene folP) is the target of sulphonamides, which are substrate analogues that compete with para- aminobenzoic acid. Molecular docking has become an increasingly important tool for drug discovery (12). Detailed analysis was performed for a better understanding of the molecular interactions between the ligands and target DHFR & DHPS proteins of E. coli based on their efficiency to bind the active sites on the receptor utilizing Autodock (version 1.5 6rC2). The docking exhibits different binding poses out of which the one with minimum binding energy was selected. The favourable conformation was analysed with hydrogen bonding with the active site residues of DHFR & DHPS (13). Fig(1): Folate Pathway In Bacteria (20). IJPT| April-2017| Vol. 9 | Issue No.1 | 28816-28829 Page 28818 Archana Moon*et al. /International Journal of Pharmacy & Technology Materials & Methods: In silico studies Molecular docking is an important tool to study the interaction of ligands with active site residues of the receptor [14, 15]. The docking involves the use of sampling algorithm and a scoring function to evaluate the proper orientation and pose of ligand molecule in relation to the binding energy. The correct identification of this binding pose of one or more related ligands is important in establishing a structure-activity relationship in lead optimization. The second use of scoring functions is to rank different ligands to predict their relative experimental activity [15-17]. In silico studies were performed using Autodock 4 suite (version 1.5 6rC2). The ligands viz, Chlorogenic acid, Ellagic acid, Gallic Acid, Hippuric acid, Quercetin and Standard Antibiotics viz, Clavulanic acid, Cephalosporin, Cephalosporin C, Penicillin, Sulfamethoxazole and Trimethoprim were docked with DHFR & DHPS enzymes of E.coli. The structure of DHFR of E.coli was downloaded from PDB (protein data base) with PDB Id 2ANO (X ray diffraction structure, 2.6A0) & PDB Id 1AJ0 for DHPS of E.coli ( X ray diffraction structure, 2.0A0). Refer Fig (2). The PubSum database, utilizes 4 characters, as inputs, to get the ligands with their Ligplots. Ligplots indicate the interacting sites of the protein of interest i.e DHFR & DHPS Fig(3,4). Next a Ramachandran Plot Fig(5) to verify the protein structure was plotted. The structure of the ligands were downloaded from Pubchem (chemical structure data base) online portal and drawn in Marvin Sketch version 5.8.1. Fig(6,7). Docking was performed for DHFR & DHPS of E.coli with ligands (Chlorogenic acid, Ellagic acid, Gallic Acid, Hippuric acid and Quercetin and Standard Antibiotics (Clavulanic acid, Cephalosporin Cephalosporin C, Penicillin, Sulfamethoxazole and Trimethoprim). The docking results were analyzed on the basis of their binding energy and their interactions (13). Fig(2): PDB Structure of DHFR and DHPS Protein.
Recommended publications
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • Computational Antibiotics Book
    Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Cephalosporins
    Case Histories of Significant Medical Advances: Cephalosporins Amar Bhidé Srikant Datar Katherine Stebbins Working Paper 20-133 Case Histories of Significant Medical Advances: Cephalosporins Amar Bhidé Harvard Business School Srikant Datar Harvard Business School Katherine Stebbins Harvard Business School Working Paper 20-133 Copyright © 2020 by Amar Bhidé, Srikant Datar, and Katherine Stebbins. Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Funding for this research was provided in part by Harvard Business School. Case Histories of Significant Medical Advances Cephalosporins Amar Bhidé, Harvard Business School Srikant Datar, Harvard Business School Katherine Stebbins, Harvard Business School Abstract: Our case history describes the development of three generations of cephalosporins – antibiotics that have significantly reduced hospital infections. Specifically, we chronicle how: 1) Early (pre-cephalosporin) antibiotics were developed in the first half of the 20th century. 2) Drug companies developed first-generation cephalosporins in the 1960s using foundational discoveries made by researchers in Italy and the UK in the 1940s and 1950s. 3) Continued modifications of cephalosporin molecules resulted in second and third generation of the drugs in the 1970s and 1980s. Note: Cephalosporins, like the others in this series of case-histories, are included in a list compiled by Victor Fuchs and Harold Sox (2001) of technologies produced (or significantly advanced) between 1975 and 2000 that internists in the United States said had had a major impact on patient care. The case histories focus on advances in the 20th century (i.e.
    [Show full text]
  • Pharmacology-2/ Dr
    1 Pharmacology-2/ Dr. Y. Abusamra Pharmacology-2 Quinolones, trimethoprim & sulfonamides Dr. Yousef Abdel - Kareem Abusamra Faculty of Pharmacy Philadelphia University 2 3 LEARNING OUTCOMES After completing studying this chapter, the student should be able to: Classify the drugs into subgroups such as quinolones and sulfonamides. Recognize the bacterial spectrum of all these antibiotic and antibacterial groups. Summarize the most remarkable pharmacokinetic features of these drugs. Numerate the most important side effects associated with these agents. Select the antibiotic of choice to be used in certain infections, as associated with the patient status including comorbidity, the species of bacteria causing the infection and concurrently prescribed drugs. Reason some remarkable clinical considerations related to the use or contraindication or precaution of a certain drug. Illustrate the mechanism of action of each of these drugs. • Following synthesis of na lidixic a c id in the early 1960s, continued modification of the quinolone nucleus expanded the spectrum of activity, improved pharmacokinetics, and stabilized compounds against common mechanisms of resistance. • Overuse resulted in rising rates of resistance in gram-negative and gram-positive organisms, increased frequency of Clostridium difficile infections, and identification of numerous tough adverse effects. • Consequently, these agents have been relegated to second-line options for various indications. 4 Pharmacology-2/ Dr. Y. Abusamra Only will be mentioned here 5 Pharmacology-2/ Dr. Y. Abusamra Most bacterial species maintain two distinct type II topoisomerases that assist with deoxyribonucleic acid Topoisomerases: Supercoiling Unwinding (DNA) replication: . DNA gyrase {supercoiling} and . Topoisomerase IV {Unwinding}. Following cell wall entry through porin channels, fluoroquinolones bind to these enzymes and interfere with DNA ligation.
    [Show full text]
  • Development of TLC Chromatographic-Densitometric Procedure for Qualitative and Quantitative Analysis of Ceftobiprole
    processes Article Development of TLC Chromatographic-Densitometric Procedure for Qualitative and Quantitative Analysis of Ceftobiprole Zaneta˙ Binert-Kusztal, Małgorzata Starek , Joanna Zandarek˙ and Monika D ˛abrowska* Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland; [email protected] (Z.B.-K.);˙ [email protected] (M.S.); [email protected] (J.Z.)˙ * Correspondence: [email protected] Abstract: Currently, there is still a need for broad-spectrum antibiotics. The new cephalosporin antibiotics include, among others, ceftobiprole, a fifth-generation gram-positive cephalosporin, active against Staphylococcus aureus methicillin agonist (MRSA). The main focus of the work was to optimize the conditions of ceftobiprole qualitative determination and to validate the developed procedure according to ICH guidelines. As a result of the optimization process, HPTLC Cellulose chromatographic plates as a stationary phase and a mixture consisting of ethanol:2-propanol: glacial acetic acid: water (4:4:1:3, v/v/v/v) as a mobile phase were chosen. The densitometric detection was carried out at maximum absorbance of ceftobiprole (λ = 232 nm). Next, the validation process of the developed procedure was carried out. The relative standard deviation (RSD) for precision was less than 1.65%, which proves the high compatibility of the results, as well as the LOD = 0.0257 µg/spot and LOQ = 0.0779 µg/spot values, which also confirm the high sensitivity of the procedure. The Citation: Binert-Kusztal, Z.;˙ Starek, usefulness of the developed method for the stability studies of ceftobiprole was analyzed.
    [Show full text]
  • Download Full Article As
    Article Comparative screening of dose-dependent and strain- specific antimicrobial efficacy of berberine against a representative library of broad-spectrum antibiotics Stephanie Sun1, Andrew Su2, Simrun Sakhrani3, Bhavesh Ashok4, Sarah Su5, Sarada Rajamanickam4, and Edward Njoo6 1BASIS Independent Silicon Valley, San Jose, CA; 2Foothill High School, Pleasanton, CA; 3The College Preparatory School, Oakland, CA; 4Amador Valley High School, Pleasanton, CA; 5Los Altos High School, Los Altos, CA; 6Department of Chemistry, Biochemistry, & Physical Science, Aspiring Scholars Directed Research Program, Fremont, CA SUMMARY methodology behind systematic screening of drugs while Widespread use of antibiotics has resulted in the trying to find a drug to treat syphilis in 1904, and Flemming, emergence of antibiotic-resistant bacteria strains, who accidentally discovered penicillin in 1929. Since then, increasing the necessity in research towards the hundreds of antimicrobial agents have been developed and identification of novel antibiotic agents. Berberine, clinically screened, the majority of which are derived from a natural alkaloid that is extracted from the roots natural products (3). Current antibiotics lack diversity in and stems of plants in the genus Berberis, has been their targets, with almost all antibiotics inhibiting DNA, RNA, documented to have medicinal potential since 3000 protein synthesis, or cell wall synthesis. In fact, around half of BC, where it was used as an antibacterial agent in all antibiotics target the cell wall. Antibiotics also lack diversity ancient Chinese medicine. Since then, berberine and in scaffold design - the core structure of small molecules- with synthesized analogs have been studied for a wide most of the novel antibiotics within the past forty years coming range of medicinal properties, including antimicrobial activity.
    [Show full text]
  • Challenges of Antibacterial Discovery Lynn L
    CLINICAL MICROBIOLOGY REVIEWS, Jan. 2011, p. 71–109 Vol. 24, No. 1 0893-8512/11/$12.00 doi:10.1128/CMR.00030-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Challenges of Antibacterial Discovery Lynn L. Silver* LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, New Jersey 07081 INTRODUCTION .........................................................................................................................................................72 The Discovery Void...................................................................................................................................................72 Class Modifications versus Novel Classes.............................................................................................................72 BACKGROUND............................................................................................................................................................72 Early Screening—a Brief and Biased Philosophical History .............................................................................72 The Rate-Limiting Steps of Antibacterial Discovery ...........................................................................................74 The Multitarget Hypothesis ....................................................................................................................................74 ANTIBACTERIAL RESISTANCE ..............................................................................................................................75
    [Show full text]
  • Disabling and Potentially Permanent Side Effects Lead to Suspension Or Restrictions of Quinolone and Fluoroquinolone Antibiotics
    11 March 2019 EMA/175398/2019 Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics On 15 November 2018, EMA finalised a review of serious, disabling and potentially permanent side effects with quinolone and fluoroquinolone antibiotics given by mouth, injection or inhalation. The review incorporated the views of patients, healthcare professionals and academics presented at EMA’s public hearing on fluoroquinolone and quinolone antibiotics in June 2018. EMA’s human medicines committee (CHMP) endorsed the recommendations of EMA’s safety committee (PRAC) and concluded that the marketing authorisation of medicines containing cinoxacin, flumequine, nalidixic acid, and pipemidic acid should be suspended. The CHMP confirmed that the use of the remaining fluoroquinolone antibiotics should be restricted. In addition, the prescribing information for healthcare professionals and information for patients will describe the disabling and potentially permanent side effects and advise patients to stop treatment with a fluoroquinolone antibiotic at the first sign of a side effect involving muscles, tendons or joints and the nervous system. Restrictions on the use of fluoroquinolone antibiotics will mean that they should not be used: to treat infections that might get better without treatment or are not severe (such as throat infections); to treat non-bacterial infections, e.g. non-bacterial (chronic) prostatitis; for preventing traveller’s diarrhoea or recurring lower urinary tract infections (urine infections that do not extend beyond the bladder); to treat mild or moderate bacterial infections unless other antibacterial medicines commonly recommended for these infections cannot be used. Importantly, fluoroquinolones should generally be avoided in patients who have previously had serious side effects with a fluoroquinolone or quinolone antibiotic.
    [Show full text]
  • Pharmacogenomic Associations Tables
    Pharmacogenomic Associations Tables Disclaimer: This is educational material intended for health care professionals. This list is not comprehensive for all of the drugs in the pharmacopeia but focuses on commonly used drugs with high levels of evidence that the CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5 only) and other select genes are relevant to a given drug’s metabolism. If a drug is not listed, there is not enough evidence for inclusion at this time. Other CYPs and other genes not described here may also be relevant but are out of scope for this document. This educational material is not intended to supersede the care provider’s experience and knowledge of her or his patient to establish a diagnosis or a treatment plan. All medications require careful clinical monitoring regardless of the information presented here. Table of Contents Table 1: Substrates of Cytochrome P450 (CYP) Enzymes Table 2: Inhibitors of Cytochrome P450 (CYP) Enzymes Table 3: Inducers of Cytochrome P450 (CYP) Enzymes Table 4: Alternate drugs NOT metabolized by CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 or CYP3A5 enzymes Table 5: Glucose-6-Phosphate Dehydrogenase (G6PD) Associated Drugs and Compounds Table 6: Additional Pharmacogenomic Genes & Associated Drugs Table 1: Substrates of Cytochrome P450 (CYP) Enzymes Allergy Labetalol CYP2C19 Immunosuppressives Loratadine CYP3A4 Lidocaine CYP1A2 CYP2D6 Cyclosporine CYP3A4/5 Analgesic/Anesthesiology CYP3A4/5 Sirolimus CYP3A4/5 Losartan CYP2C9 CYP3A4/5 Codeine CYP2D6 activates Tacrolimus CYP3A4/5 Lovastatin
    [Show full text]
  • Fluoroquinolone Use in Paediatrics: Focus on Safety and Place in Therapy
    18th Expert Committee on the Selection and Use of Essential Medicines (2011) Fluoroquinolone Use in Paediatrics: Focus on Safety and Place in Therapy Jennifer A. Goldman, M.D. 1,2, Gregory L. Kearns, Pharm.D., Ph.D. 1,3,4 Departments of Pediatrics 1 and Pharmacology 3, University of Missouri – Kansas City and the Divisions of Pediatric Infectious Disease 2 and Clinical Pharmacology and Medical Toxicology, 4 Children’s Mercy Hospital, Kansas City, MO, USA Commissioned work for the Guidelines Group for the Revision of the “Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children”, World Health Organization, 30-31 March 2010, Geneva, Switzerland 1 I. Introduction The first quinolone, nalidixic acid, was developed in the 1960s and was used (off- label) in pediatric therapeutics without restriction. Consequent to their broad spectrum of antimicrobial (including anti-mycobacterial) effect and perceived excellent safety profile, there was considerable hope and expectation that this class of antibiotics would find an important place in pediatric therapeutics. However, reports of quinolone-associated injury in weight bearing joints of juvenile animals resulted not only in an apparent contraindication to their use in human infants and children but also, completely derailed their formal development by pharmaceutical companies for use in pediatrics. While this situation resulted from a genuine concern for safety seemingly supported by relevant experimental findings, it served initially to remove a potentially useful
    [Show full text]