Thallium, Crookes, and Lamy

Total Page:16

File Type:pdf, Size:1020Kb

Thallium, Crookes, and Lamy Rediscovery of the Elements Thallium, Crookes, and Lamy With the development of spectroscopic analysis by Bunsen and Kirchhoff and U U their discovery of cesium and rubidium (1860-1861)," the hunt was on for more x& element discoveries using this new tool. Almost immediately, thallium was n independently discovered by William Crookes (1832-1919) and Claude-Auguste Lamy (1820-1878) (Figure 1). At an early age Crookes developed a passion The Role of the Independent Editor. for photography, a hobby he pursued in his Modern research journals, such as The Journalof Brook Green home laboratory built for him by the American Chemical Society, utilize a formal his parents in 1851 (Figure 2). Here he devel- protocol of submission and peer review. In ear- oped new photographic techniques which lier years, however, it was common for a journal James L. Ma snai, baa Eta 1971, and required a wide broadening of his chemical to be owned and/or managed by an indepen- Virginia R. Marshall, Beta Eta 2003, knowledge. Blending his expertise in photogra- dent editor free to pontificate on various mat- Department of Chemistry, University of phy and chemistry, he designed instrumenta- ters. Often a journal would be more easily rec- North Texas, Denton, TX 76203-5070,- tion and devised techniques in the spectroscop- ognized by the editor's name, e.g., "Gilbert's ic examination of chemical substances. Hence, Annalen" (Annalen der Physik) or "Liebig's [email protected] by the time Bunsen discovered cesium spectro- Annalen" (Annalen der Chemie). For example, scopically in 1860, Crookes had already the editor Ludwig Wilhelm Gilbert (1769-1824) Crookes, the "Commercial Scientist."' launched his own search for new elements. would editorialize on on the significance of Crookes was an entrepreneur and scientific When his old mentor Hofmann needed a spec- D6bereiner's Triads' (precursor to the Periodic journalist with research achievements in chem- troscope in 1861 for a demonstration lecture on Table"), or he would suggest alternate possible istry, physics, and photography. His many Bunsen and Kirchhoff at the new South names for Stromeyer's new element isolated inventions included the Crookes tube, the Kensington Museum, he turned to Crookes for from zinc"-not only "Kadmium," but also radiometer, and the spinthariscope (Note 1), the only high quality instrument equal to the "Junonium" and "Melinium." Berzelius in his and he was awarded Fellowship of the Royal task in the entire British Isles. Jahres-Berichtuber die Fortschritteder Chemie und Society (1863), knighthood (1897), the Davy Medal (1888), and the Order of Merit (1910). William Crookes was born to Joseph (1792-1884) and Mary ne6 Scott (1806-1884) Crookes; Joseph was a well-to-do tailor with a home and shop on Regents Street on the west end of London with its prospering gentry ~ (Figure 2). Soon the family would move west- ward with expanding London. William's schooling was gained at the new Royal College of Chemistry (Figure 3), founded in 1845 by Prince Albert (consort of Queen Victoria) who was keen on promoting the technology base of Great Britain.' Using the German model, Albert invited August Wilhelm von Hofmann (1818-1892) from the group of Justus von Liebig (University of Giessen). At the Royal College Crookes researched selenocyanides (- Figure 1. Claude-Auguste Lamy (left) and William Crookes (middle) are shown when thallium was discov- SeCN compounds) using material procured by ered and characterized(early 1860s). Crookes lived well into his eighties and his elderly portraits(right) Hofmann from the Harz Mountains of with his classic waxed mustache and goatee, at the apex of his career, are more familiar in the biographical Germany.' literature.Lamy did not live so long after the thallium work, and is only known by this portrait.' 62 THE HEXAGON/WINTER 2011 Crookes*an Mornington -London Kensington ry Regent _ Court Gardens' Hyde Park Brook Green \ ucki ngham, / ~alace, Big Ben " - M useum er ame figur 3. jila oyal Coilege of Chemistry at 299 Oxford Street, where William Crookes was trained in chemistry and published his first paper on selenocyanides. Today this site is occupied by a men's apparel store. By 1872 the institution had moved to New Kensington (200 meters west of the Figure 2. Sites pertainingto William Crookes in London (asteriskdenotes edifice no longer exists). 0 present Science Museum) and by 1907 had Father's tailor shop, * Crookes' birthplace, 143 Regent St.-N51 30.68 W00 08.35. evolved to the 0 0 modern Imperial College (N51 Family home* 1846-1856 in Brook Green (Masborough House)-N51* 29.72 WO 13.03. 29.86 WO0 10.66), where the original dedication 0 0 Royal College of Chemistry, founded 1845, 16 Hanover Square (N51 30.86 WO 08.67); then (in stone laid by Prince Albert in 1846 is on display. 1848) 299 Oxford Street* where Crookes attended-N510 30.89 WO0 08.69. Crookes' home* 1857-1879, 20 Mornington Road 1857-1878, discovered thallium and performed deposits. In his following publication he cate- 0 0 spiritualismexperiments here-N51 32.08 WO 08.58. gorized his new element as a "metalloid," and 0 0 Crookes' home 1880-1919, 7 Kensington Park Gardens, Notting Hill-N51 30.69 WO 12.16. he named it "thallium" ("thallos," Greek for Science Museum, Exhibition Road, South Kensington, London, wealthy repository of Crookes'exhibits- "green budding twig"). N51' 29.86 WO0 10.44. Crookes was a nieticulous observer, careful Publishinghouses of William Crookes. Wine Office Court, site of Crookes' periodicalChemical News not to confuse stray lines with new elements. 1861-1867 (there were also several other sites in the general locality during the life of the journal)-N51 He had previously corrected others who had 0 30.86 WOO 06.43. "discovered"new elements- for example, John NOT SHOWN: F. W. Herschel (1792-1871; son of William Home at 15 Stanley St. [now Ovington St.] in Brompton (0.7 km east of Science Museum), residence in Herschel 1738-1822, discoverer of the planet 0 0 1856 with new bride Ellen Humphrey (1836-1916) before moving to Mornington Road-N51 29.73 WO Uranus) in his naive exuberance originally 09.90. interpreted the manifold spectral lines now Royal Institution, 21 Albemarle St. (300 meters southwest of Regent Street), exhibits on Crookes and other appearing in modern spectroscopes as new ele- 0 0 scientists-N51 30.58 WO 08.55. ments-which he named junonium, vestium, neptunium, asataeum, and hebeium-until Mineralogie" coined the term "catalyst" for his years past his death (Figures 4,5). In this jour- more careful study showed the lines belonged concept of a special agent in plants, anticipating nal Crookes emphasized commercial chemistry to known elements." In Crookes' study of thal- enzymes by almost half a century. The but did not hesitate to venture into many areas lium," he cautiously precluded all other possi- announcement in the Western World of the of pure research. And it was in this medium bilities by both spectroscopic and chemical spurious "vestium" by Sniadecki" and its rejec- that he announced his own discovery of thalli- means, in all 55 other known metals and met- tion by the French Science Academy was made um, the "first element discovered by an alloids, as well as the gases and carbon.' by Jean-Claude de La Mdtherie (1743-1817) in Englishman since [Sir Humphry] Davy's dis- his private Journal de physique, de chimie, d'his- covery of the alkali metals."" The Surprise at the International Exhibi- toire naturelle et des arts. In The HEXAGON tion of 1862. Eager to introduce his new ele- "Discovery" series we have seen back-and- The Discovery of Thallium. Crookes was ment at the 1862 International Exhibition at forth discussions of Hevesy and Coster's hafni- caught up in the race to "discover a new ele- Hyde Park in London, Crookes received a rude um and Urbain's celtium,"" Soddy's transmu- ment before they ran out."'" Returning to the shock-another scientist, a Frenchman tating elements,"' Rutherford's atom,"1 and Harz Mountains sample previously used in his Claude-Auguste Lamy (1820-1878), a professor Moseley's atomic numbers," all discussed in selenocyanide studies, Crookes subjected it to of the Universitd de Lille (northeast France), Nature, the journal founded in 1869 by Joseph spectral analysis. His observation filled him was bringing his own exhibit of thallium. Norman Lockyer (1836-1920); co-discoverer of with excitement: "Suddenly a green flash Lamy" was born in Ney, in the Jura region of solar helium. And lastly there was William appeared before my eyes!" (Figures 6,7) He southeast France. He was the son of Desire Crookes, who after two years as editor of vari- surmised that the element was of the "sulfur (1782-1865) and Rosalie nee Melet ous photographic journals, in 1859 founded family,"' because sulfur, selenium, and telluri- (1796-1853) Lamy; Ddsir6 was a career officer Chemical News which lasted for 73 years, 13 um were known to occur together in ore in the major battles of Napoleon I. Claude- WINTER 2011 /THE HEXAGON 63 ILIL t f igmre 4. Wine Ufpce Court, the site of Crookes Chemical News publishing houses 18o1-1807, retains the I lgure ). \c Old (hcShire checsc is iipub with Georgian atmosphere of earlier times. Samuel Johnson, who wrote the first comprehensive dictionaryof the a rich heritage of Tutor windows, oak panels, and English language, lived here 1748-1759. The name of the court is derived from the Excise Office that exist- sawdust-coveredfloors, datingfrom 1667, rebuilt ed here until 1665. It presently holds Ye Old Cheshire Cheese (see next figure). in that year because of the great London fire of 1666.
Recommended publications
  • May 2016 Alan J. Rocke EDUCATION BA, 1969, Chemistry, Beloit College
    -1- May 2016 Alan J. Rocke EDUCATION B.A., 1969, Chemistry, Beloit College, Beloit, Wisconsin M.A., 1973, History of Science, University of Wisconsin-Madison Thesis: “Isaac Newton’s Theory of Matter” University of Munich, West Germany, 1974-75 Ph.D., 1975, History of Science, University of Wisconsin-Madison Dissertation: “Origins of the Structural Theory in Organic Chemistry” ACADEMIC EMPLOYMENT University of Wisconsin-Madison 1969-74 Teaching Assistant, Depts. of Chemistry and History of Science 1975-78 Lecturer, Depts. of Chemistry and Integrated Liberal Studies Case Western Reserve University 1978-84 Assistant Professor of History of Science and Technology, Department of Interdisciplinary Studies 1984-93 Associate Professor of History of Technology and Science 1993-2016 Professor of History 1995-2016 Henry Eldridge Bourne Professor of History 2012- Distinguished University Professor AWARDS AND HONORS Jack Youden Prize (American Society for Quality Control, Chemical Division), 1982 Carl F. Wittke Award for Excellence in Undergraduate Teaching, 1988 Outstanding Paper Award (American Chemical Society, History Division), 1992 Dexter Award for Outstanding Lifetime Contributions to the History of Chemistry (American Chemical Society), 2000 Fellow of the American Association for the Advancement of Science, 2000 Liebig-Wöhler Freundschafts-Preis, Lewicki Foundation, Göttingen, 2002 Membre correspondant, Académie Internationale d’Histoire des Sciences, 2007 Fellow of the American Chemical Society, 2012 Distinguished University Professor, 2012
    [Show full text]
  • One Century of Cosmic Rays – a Particle Physicist\'S View
    EPJ Web of Conferences 105, 00001 (2015) DOI: 10.1051/epjconf/201510500001 c Owned by the authors, published by EDP Sciences, 2015 One century of cosmic rays – A particle physicist’s view Christine Suttona CERN, 1211 Geneva 23, Switzerland Abstract. Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ -ray source by a ground-based cosmic-ray telescope in 1989. 1. Introduction remove the air led to the discovery of “cathode rays” emitted from the cathode at one end of the tube. In 1879, in “There are more things in heaven and earth than are the course of investigations in England, William Crookes dreamt of in your philosophy ...” (Hamlet, William discovered that the speed of the discharge along the length Shakespeare). of a vacuum tube decreased as he reduced the pressure. This indicated that ionization of the air was causing the The modern fields of cosmic-ray studies and experimental discharge. particle physics have much in common, as they both The last few years of the 19th century saw a burst investigate the high-energy interactions of subatomic of discoveries that not only cast light on the effect that particles.
    [Show full text]
  • Röntgen's Discovery of X-Rays
    Röntgen’s discovery of X-rays by Jean-Jacques Samueli1, PhD in physics Wilhelm Conrad Röntgen was born on 27 March 1845 in Lennep in Germany (Westphalia). He studied in Zurich and then became a professor of physics in Strasburg (1876–1879), which was then under German occupation. This was followed by posts in Giessen (1879–1888), Würzburg (1888–1900) and Geneva (1900–1920). He received the first Nobel Prize in Physics in 1901 for his discovery of X-rays, a discovery he had made in late 1895 using a Crookes tube in a darkened room. RÖNTGEN’S EXPERIMENT On 8 November 1895, Röntgen wrapped some black cardboard around a Crookes tube attached to a Ruhmkorff induction coil, in other words a step-up transformer excited by repeated electrical pulses. Every pulse produced an electric discharge in the low-pressure gas in the tube. After turning off the lights in the room, Röntgen noticed a fluorescent effect on a small paper screen painted with barium platinocyanide. One of the properties of barium platinocyanide is that it is fluorescent, which means it emits light when it is excited by photons. This fluorescence appeared when the paper was fewer than two metres away from the tube, even when the paper was obscured by black cardboard. Röntgen concluded that the tube was producing invisible radiation of an unknown nature, which he called an X-ray, and that this was causing the fluorescence he had observed. The Crookes tube Sir William Crookes (1832–1919) invented an experimental device, which is now known as a Crookes tube (or a discharge tube, gas-filled tube or cold cathode tube), to study the fluorescence of minerals.
    [Show full text]
  • Back Matter (PDF)
    [ 229 • ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s B, FOR THE YEAR 1897 (YOL. 189). B. Bower (F. 0.). Studies in the Morphology of Spore-producing Members.— III. Marattiaceae, 35. C Cheirostrobus, a new Type of Fossil Cone (Scott), 1. E. Enamel, Tubular, in Marsupials and other Animals (Tomes), 107. F. Fossil Plants from Palaeozoic Rocks (Scott), 1, 83. L. Lycopodiaceae; Spencerites, a new Genus of Cones from Coal-measures (Scott), 83. 230 INDEX. M. Marattiaceae, Fossil and Recent, Comparison of Sori of (Bower), 3 Marsupials, Tubular Enamel a Class Character of (Tomes), 107. N. Naqada Race, Variation and Correlation of Skeleton in (Warren), 135 P. Pteridophyta: Cheirostrobus, a Fossil Cone, &c. (Scott), 1. S. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Ro ks.—On Cheirostrobus, a new Type of Fossil Cone from the Lower Carboniferous Strata (Calciferous Sandstone Series), 1. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Rocks.—II. On Spencerites, a new Genus of Lycopodiaceous Cones from the Coal-measures, founded on the Lepidodendron Spenceri of Williamson, 83. Skeleton, Human, Variation and Correlation of Parts of (Warren), 135. Sorus of JDancea, Kaulfxissia, M arattia, Angiopteris (Bower), 35. Spencerites insignis (Will.) and S. majusculus, n. sp., Lycopodiaceous Cones from Coal-measures (Scott), 83. Sphenophylleae, Affinities with Cheirostrobus, a Fossil Cone (Scott), 1. Spore-producing Members, Morphology of.—III. Marattiaceae (Bower), 35. Stereum lvirsutum, Biology of; destruction of Wood by (Ward), 123. T. Tomes (Charles S.). On the Development of Marsupial and other Tubular Enamels, with Notes upon the Development of Enamels in general, 107.
    [Show full text]
  • Tabea Cornel 1
    Tabea Cornel 1 Betahistory The Historical Imagination of Neuroscience1 1. Introduction [T]he beta (β) of an investment is a measure of the risk arising from exposure to gen- eral market movements as opposed to idiosyncratic factors. The market portfolio of all investable assets has a beta of exactly 1. A beta below 1 can indicate either an in- vestment with lower volatility than the market, or a volatile investment whose price movements are not highly correlated with the market. … A beta above one generally means that the asset both is volatile and tends to move up and down with the mar- ket. … There are few fundamental investments with consistent and significant nega- tive betas, but some derivatives like equity put options can have large negative betas. (Wikipedia 2015) This paper inquires into how the history of neuroscience should be written. And it will not an- swer the question. Instead, it will draw together meta-histor(iograph)ical accounts and illustrate to what extent these could steer someone who aims at coming up with a qualified answer to this question in the right direction. Several old and not-so-old men have been wrestling with the problems of how history is or has been written and how it ought to be written. Before I embark on illustrations of different possible kinds of history-writing, previous work on which the elab- orations in this paper rest will be briefly introduced. Historian of medicine Roger Cooter published several reflections on the historiography of science and medicine, explicitly including neuroscience, over the course of the past years.
    [Show full text]
  • Bicentenary of Four Platinum Group Metals
    Bicentenary of Four Platinum Group Metals PART I: RHODIUM AND PALLADIUM – EVENTS SURROUNDING THEIR DISCOVERIES By W. P. Griffith Department of Chemistry, Imperial College, London SW7 2AZ The years 2002 to 2004 mark the bicentenaries of the discoveries of rhodium, palladium, iridium and osmium. Two remarkable people were responsible for their discoveries William Hyde Wollaston (17661828) the discoverer of rhodium and palladium, and his friend Smithson Tennant (17611815) the discoverer of iridium and osmium. This and a subsequent paper will seek to retell the stories of their discoveries, and to indicate the growing usefulness of the metals throughout the nineteenth century to their importance today. In this first part we will discuss Wollaston and his discoveries. Part II, to be published in a later issue, will complete the story with Tennants discoveries of the more intractable elements iridium and osmium. In 1789, Lavoisier defined the element as: described it in an anonymous handbill in April 1803. Later that year Wollaston, still anonymously, du dernier terme auquel parvient lanalyse published the information in Nicholsons Journal (5). (the last point that analysis can reach). He listed In November 1803 he confided its discovery to his thirty-three simple substances, of which we friend, Sir Joseph Banks, the President of the would now recognise twenty-three as elements. Royal Society (6, 7). Eventually he commented on Ten of these had been known since antiquity and it in the Philosophical Transactions of the Royal Society in seventeen more were discovered before 1789, but 1804 (8) and finally published it openly in 1805 (9), the golden age of discovery and isolation of the so the year 2003 is thus reasonable to claim for the elements followed after Lavoisiers definition.
    [Show full text]
  • Back Matter (PDF)
    [ 387 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V ol. 194. A. Alloys of gold and aluminium (Heycock and Neville), 201. B. Bakerian Lecture (Tilden), 233. C. Chappuis (P.). See Habkeb and Chappuis. Children, association of defects in (Yule), 257. Cole (E. S.). See W obthinoton and Cole. Combinatorial analysis (MacMahon), 361. Conductivity of dilute solutions (W hetham), 321. E. Earthquake motion, propagation to great distances (Oldham), 135. G. Gold-aluminium alloys—melting-point curve (Heycock and Neville), 201. Gbindley (John H.). An Experimental Investigation of the Tliermo-dynamical Properties of Superheated Steam.—On the Cooling of Saturated Steam by Free Expansion, 1. H. Habkeb (J. A.) and Chapptjis (P.). A Comparison of Platinum and Gas Thermometers, including a Determination of the Boiling-point of Sulphur on the Nitrogen Scale, 37. Heycock (C. T.) and Neville (F. H.). Gold-aluminium alloys, 201. VOL. CXCIV.---- A 261. 3 D 2 388 INDEX. T. Impact with a liquid surface (W orthington and Cole), 175. Ionization of solutions at freezing point (W hetham), 321. L. Latin square problem (MacMahon), 361. M. MacMahon (P. A.). Combinatorial Analysis.—The Foundations of a New Theory, 361. Metals, specific heats of—relation to atomic weights (Tilden), 233. N. N eville (F. H.). See H eycock and N eville. O. Oldham (R. D.) On the Propagation of Earthquake Motion to Great Distances, 135. P. Perry (John). Appendix to Prof. Tilden’s Bakerian Lecture—Thermo-dynamics of a Solid, 250. R. Resistance coils—standardization o f; manganin as material for (Harker and Chappuis), 37. S.
    [Show full text]
  • The Royal Society of Chemistry Presidents 1841 T0 2021
    The Presidents of the Chemical Society & Royal Society of Chemistry (1841–2024) Contents Introduction 04 Chemical Society Presidents (1841–1980) 07 Royal Society of Chemistry Presidents (1980–2024) 34 Researching Past Presidents 45 Presidents by Date 47 Cover images (left to right): Professor Thomas Graham; Sir Ewart Ray Herbert Jones; Professor Lesley Yellowlees; The President’s Badge of Office Introduction On Tuesday 23 February 1841, a meeting was convened by Robert Warington that resolved to form a society of members interested in the advancement of chemistry. On 30 March, the 77 men who’d already leant their support met at what would be the Chemical Society’s first official meeting; at that meeting, Thomas Graham was unanimously elected to be the Society’s first president. The other main decision made at the 30 March meeting was on the system by which the Chemical Society would be organised: “That the ordinary members shall elect out of their own body, by ballot, a President, four Vice-Presidents, a Treasurer, two Secretaries, and a Council of twelve, four of Introduction whom may be non-resident, by whom the business of the Society shall be conducted.” At the first Annual General Meeting the following year, in March 1842, the Bye Laws were formally enshrined, and the ‘Duty of the President’ was stated: “To preside at all Meetings of the Society and Council. To take the Chair at all ordinary Meetings of the Society, at eight o’clock precisely, and to regulate the order of the proceedings. A Member shall not be eligible as President of the Society for more than two years in succession, but shall be re-eligible after the lapse of one year.” Little has changed in the way presidents are elected; they still have to be a member of the Society and are elected by other members.
    [Show full text]
  • Sir William Crookes (1832-1919) Published on Behalf of the New Zealand Institute of Chemistry in January, April, July and October
    ISSN 0110-5566 Volume 82, No.2, April 2018 Realising the hydrogen economy: economically viable catalysts for hydrogen production From South America to Willy Wonka – a brief outline of the production and composition of chocolate A day in the life of an outreach student Ngaio Marsh’s murderous chemistry Some unremembered chemists: Sir William Crookes (1832-1919) Published on behalf of the New Zealand Institute of Chemistry in January, April, July and October. The New Zealand Institute of Chemistry Publisher Incorporated Rebecca Hurrell PO Box 13798 Email: [email protected] Johnsonville Wellington 6440 Advertising Sales Email: [email protected] Email: [email protected] Printed by Graphic Press Editor Dr Catherine Nicholson Disclaimer C/- BRANZ, Private Bag 50 908 The views and opinions expressed in Chemistry in New Zealand are those of the individual authors and are Porirua 5240 not necessarily those of the publisher, the Editorial Phone: 04 238 1329 Board or the New Zealand Institute of Chemistry. Mobile: 027 348 7528 Whilst the publisher has taken every precaution to ensure the total accuracy of material contained in Email: [email protected] Chemistry in New Zealand, no responsibility for errors or omissions will be accepted. Consulting Editor Copyright Emeritus Professor Brian Halton The contents of Chemistry in New Zealand are subject School of Chemical and Physical Sciences to copyright and must not be reproduced in any Victoria University of Wellington form, wholly or in part, without the permission
    [Show full text]
  • MAUVE and ITS ANNIVERSARIES* Anthony S
    Bull. Hist. Chem., VOLUME 32, Number 1 (2007) 35 MAUVE AND ITS ANNIVERSARIES* Anthony S. Travis, Edelstein Center, Hebrew University of Jerusalem/Leo Baeck Institute London Introduction chemical constitution of the natural dye indigo, as well as other natural products. Of particular interest, however, In 1856, William Henry Perkin in were the components of, and pos- London prepared the first aniline sible uses for, the vast amount of dye, later known as mauve. The coal-tar waste available from coal- eighteen-year-old inventor sought, gas works and distilleries. Around but failed, to find a licensee for 1837, Liebig’s assistant A. Wilhelm his process, and then embarked Hofmann extracted several nitro- on manufacture, with the back- gen-containing oils from coal tar ing of his father and a brother. and showed that of these bases the The opening of their factory and one present in greatest abundance the sudden demand for mauve in was identical with a product earlier 1859 foreshadowed the growth obtained from indigo as well as of the modern organic chemical from other sources. It was soon industry. The search throughout known as aniline. Europe for novel colorants made In 1845 Hofmann moved to scientific reputations and trans- London to head the new Royal Col- formed the way in which research lege of Chemistry (RCC). There he was conducted, in both academic continued his studies into aniline and industrial laboratories. Ac- and its reactions. At that time, there cordingly, the sesquicentennial William Henry Perkin (1838-1907), in 1860. Heinrich Caro (1834-1910), technical leader were no modern structural formulae of mauve provides an opportune at BASF, 1868-1889.
    [Show full text]
  • The JOURNAL of the Radiology History & Heritage Charitable Trust
    The Radiology History & Heritage Charitable Trust The JOURNAL of the Radiology History & Heritage Charitable Trust Number 12, Autumn/Winter1999 Editor: Dr Adrian Thomas BSc FRCP FRCR Department of Clinical Radiology Bromley Hospital 17 Cromwell Avenue, Bromley, Kent BR2 9AJ UK Tel: +44(0) 181 289 7070 Fax: +44(0) 181 289 7003 E-mail: [email protected] or [email protected] URL: www.rhhct.org.uk Editorial otes Welcome to the new issue of the RHHCT Journal and I hope it contains something of interest to all. I thought it appropriate to change the name to Journal since it has become rather more than a simple newsletter. If you have an article or any comments to contribute then please contact me. I am particularly interested in an article on radiotherapy for the web site. I hope to produce the next newsletter in time for IOS 2000. It is interesting to realise that next year we will be saying that the discovery of X-rays was in the century before last! The year 1895 will suddenly appear further away. Robert George, the Regional Secretary for Asia/Australasia for ISRRT has written a most interesting article on Adelaide and the Braggs (father William and son Lawrence) and their X-ray activities. It is worth noting that Sir William Bragg gave the Mackenzie Davidson Memorial Lecture in 1934 and was made an Honorary Member of the British Institute of Radiology in 1918. Sir Lawrence Bragg gave the Silvanus Thompson Memorial Lecture in 1955. The piece on Early Spiritualism and the Early Investigators by Angela Howard was only included in this newsletter after some thought.
    [Show full text]
  • The 100 Most Influential Scientists of All Time / Edited by Kara Rogers.—1St Ed
    Published in 2010 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2010 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2010 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition Kara Rogers: Senior Editor, Biomedical Sciences Rosen Educational Services Jeanne Nagle: Senior Editor Nelson Sá: Art Director Introduction by Kristi Lew Library of Congress Cataloging-in-Publication Data The 100 most influential scientists of all time / edited by Kara Rogers.—1st ed. p. cm.—(The Britannica guide to the world’s most influential people) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes index. ISBN 978-1-61530-040-2 (eBook) 1. Science—Popular works. 2. Science—History—Popular works. 3. Scientists— Biography—Popular works. I. Rogers, Kara.
    [Show full text]