Guidelines for Using Bivalirudin During Cardiopulmonary Bypass Surgery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kengrexal, INN-Cangrelor Tetrasodium
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Kengrexal 50 mg powder for concentrate for solution for injection/infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains cangrelor tetrasodium corresponding to 50 mg cangrelor. After reconstitution 1 mL of concentrate contains 10 mg cangrelor. After dilution 1 mL of solution contains 200 micrograms cangrelor. Excipient with known effect Each vial contains 52.2 mg sorbitol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for solution for injection/infusion. White to off-white lyophilised powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Kengrexal, co-administered with acetylsalicylic acid (ASA), is indicated for the reduction of thrombotic cardiovascular events in adult patients with coronary artery disease undergoing percutaneous coronary intervention (PCI) who have not received an oral P2Y12 inhibitor prior to the PCI procedure and in whom oral therapy with P2Y12 inhibitors is not feasible or desirable. 4.2 Posology and method of administration Kengrexal should be administered by a physician experienced in either acute coronary care or in coronary intervention procedures and is intended for specialised use in an acute and hospital setting. Posology The recommended dose of Kengrexal for patients undergoing PCI is a 30 micrograms/kg intravenous bolus followed immediately by 4 micrograms/kg/min intravenous infusion. The bolus and infusion should be initiated prior to the procedure and continued for at least two hours or for the duration of the procedure, whichever is longer. At the discretion of the physician, the infusion may be continued for a total duration of four hours, see section 5.1. -
A Common Occurrence After Coronary Bypass Surgery
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector lACC Vol. 15, No.6 1261 May 1990:1261-9 Acute Myocardial Dysfunction and Recovery: A Common Occurrence After Coronary Bypass Surgery WARREN M. BREISBLATT, MD, FACC, KEITH L. STEIN, MD, CYNTHIA J. WOLFE, RN, WILLIAM P. FOLLANSBEE, MD, FACC, JOHN CAPOZZI, CNMT, JOHN M. ARMITAGE, MD, ROBERT L. HARDESTY, MD, FACC Pittsburgh, Pennsylvania To evaluate whether acute myocardial dysfunction was min after coronary bypass and showed complete recovery common in the early postoperative period, serial hemody• within 48 h. Left ventricular end-systolic and end-diastolic namic measurements and radionuclide evaluation of ven• volume index increased significantly postoperatively, but tricular function were performed before and after opera• recovery in left ventricular ejection fraction was mostly due tion in 24 patients undergoing elective coronary bypass to decreases in end-systolic volume index (50 ± 22 ml at surgery. All patients had uncomplicated surgery, and no trough and 32 ± 16 ml at recovery). Depressed myocardial patient sustained an intraoperative infarction. In 96% of function was independent of bypass time, number of grafts patients, significant depression in right and left ventricular placed, preoperative medications or core temperatures ejection fraction was seen postoperatively, reaching a nadir postoperatively. Postoperative therapy with pressors or at 262 ± 116 min after coronary bypass. Left ventricular inotropic agents delayed but did -
Cardiopulmonary Bypass During Pregnancy: a Case Report
Cardiopulmonary Bypass During Pregnancy: A Case Report Robin G. Sutton and James P. Dearing Medical University of South Carolina Charleston, South Carolina Keywords: case report; pregnancy; technique, cardiopulmonary bypass Abstract _______________ diac operations in pregnant women. II% of the surveys returned included the use of cardiopulmonary bypass. (/. Extra-Corpor. Techno/ 20(2):67-71, 39 refer Our recent experience at the Medical University of ences) Reported cases of the pregnant patient dur South Carolina with a 21-year-old woman, with congen ing cardiopulmonary bypass are rare but not unique. ital aortic stenosis, who was in her second trimester of This case report of the pregnant patient during car pregnancy led us to this investigation of the literature. diopulmonary bypass is unique for two reasons. First, the patient was also a Jehovah's Witness and refused Normal Pregnancy blood products. Secondly, this case report provides Even in normal pregnancy there is an increased stress a literature review and specific cardiopulmonary on the heart. Starting from the 8th week of gestation, the bypass considerations pertinent to the perfusionist. blood volume begins to expand. By the 36th week, blood Recent literature reports that heart surgery is rel volume is increased to 35 percent above the non-preg atively safe during pregnancy. It is important to nant level. The plasma volume is increased by 40 percent monitor fetal heart rate during the procedure not whereas the red blood cell volume has only increased by 2 only to determine fetal distress but also to further 20 percent. By the end of the first trimester, the cardiac knowledge in the area by documenting effects. -
Arterial Switch Operation Surgery Surgical Solutions to Complex Problems
Pediatric Cardiovascular Arterial Switch Operation Surgery Surgical Solutions to Complex Problems Tom R. Karl, MS, MD The arterial switch operation is appropriate treatment for most forms of transposition of Andrew Cochrane, FRACS the great arteries. In this review we analyze indications, techniques, and outcome for Christian P.R. Brizard, MD various subsets of patients with transposition of the great arteries, including those with an intact septum beyond 21 days of age, intramural coronary arteries, aortic arch ob- struction, the Taussig-Bing anomaly, discordant (corrected) transposition, transposition of the great arteries with left ventricular outflow tract obstruction, and univentricular hearts with transposition of the great arteries and subaortic stenosis. (Tex Heart Inst J 1997;24:322-33) T ransposition of the great arteries (TGA) is a prototypical lesion for pediat- ric cardiac surgeons, a lethal malformation that can often be converted (with a single operation) to a nearly normal heart. The arterial switch operation (ASO) has evolved to become the treatment of choice for most forms of TGA, and success with this operation has become a standard by which pediatric cardiac surgical units are judged. This is appropriate, because without expertise in neonatal anesthetic management, perfusion, intensive care, cardiology, and surgery, consistently good results are impossible to achieve. Surgical Anatomy of TGA In the broad sense, the term "TGA" describes any heart with a discordant ven- triculoatrial (VA) connection (aorta from right ventricle, pulmonary artery from left ventricle). The anatomic diagnosis is further defined by the intracardiac fea- tures. Most frequently, TGA is used to describe the solitus/concordant/discordant heart. -
Heparin Induced Thrombocytopenia – Adult – Inpatient– Clinical Practice Guideline
Heparin Induced Thrombocytopenia – Adult – Inpatient– Clinical Practice Guideline Table of Contents EXECUTIVE SUMMARY ........................................................................................................... 2 SCOPE ...................................................................................................................................... 6 METHODOLOGY ...................................................................................................................... 6 DEFINITIONS (OPTIONAL): ..................................................................................................... 7 INTRODUCTION ....................................................................................................................... 7 RECOMMENDATIONS .............................................................................................................. 7 BENEFITS/HARMS OF IMPLEMENTATION ...........................................................................17 IMPLEMENTATION PLAN AND TOOLS ........................ERROR! BOOKMARK NOT DEFINED. REFERENCES .........................................................................................................................17 APPENDIX A ............................................................................................................................17 Note: Active Table of Contents Click to follow link CPG Contact for Changes: CPG Contact for Content: Name: Philip J Trapskin, PharmD,BCPS Name: Anne E. Rose, PharmD Phone Number: 263-1328 Phone Number: -
Anticoagulation Dosing Guideline for Adult COVID-19 Patients
Anticoagulation Dosing Guideline for Adult COVID-19 Patients Enoxaparin is the preferred first line anticoagulant for patients diagnosed with COVID-19. The incidence of HIT with enoxaparin is less than 1%. VTE Prophylaxis: VTE prophylaxis will be considered for COVID-19 patients who are low risk. Low risk COVID-19 patient 1. Not receiving mechanical ventilation 2. D-Dimer < 6 mg/L 3. ESRD on iHD without clotting Kidney Function BMI (kg/m2) Dosing of Enoxaparin Concern for HIT or LMWH Failure CrCL ≥ 30 mL/min 18.5-39.9 30mg SUBQ Q12H Consult Hematology 40-49.9 40mg SUBQ Q12H ≥ 50 60mg SUBQ Q12H CrCL < 30 mL/min 18.5-39.9 30mg SUBQ Q24H Consult Hematology OR ≥ 40 40mg SUBQ Q24H ESRD/AKI on RRT Special Population: < 18.5 (or weight < 50kg) Heparin 2500 SUBQ Q8H Consult Hematology *Contraindications: Platelets < 25 K/uL or Fibrinogen < 50 mg/dL or active bleeding Therapeutic anticoagulation Therapeutic anticoagulation will be considered for COVID-19 patients who are considered high risk or diagnosed with an acute VTE. High risk COVID-19 patient (for all hospitalized patients): Receiving mechanical ventilation AND D-dimer > 6 mg/L OR Acute kidney injury (Scr increase 0.3 mg/dL above baseline) +/- CVVHD/AVVHD/SLED or IHD with clotting Anti-Xa level goals for enoxaparin therapy (when indicated): 1. Therapeutic peak LMWH level (Drawn 4 hours after 3rd dose): 0.6-1 anti-Xa units/mL 2. Therapeutic trough LMWH level (Drawn 1 hour prior to 3rd dose): < 0.5 anti-Xa units/mL Kidney Function BMI Dosing of Enoxaparin Concern for HIT or (kg/m2) LMWH -
Transition of Anticoagulants 2019
Transition of Anticoagulants 2019 Van Hellerslia, PharmD, BCPS, CACP, Brand Generic Clinical Assistant Professor of Pharmacy Practice, Angiomax bivalirudin Temple University School of Pharmacy, Philadelphia, PA Arixtra fondaparinux Bevyxxa betrixaban Pallav Mehta, MD, Assistant Professor of Medicine, Coumadin warfarin Division of Hematology/Oncology, Eliquis apixaban MD Anderson Cancer Center at Cooper, Camden, NJ Fragmin dalteparin Lovenox enoxaparin Reviewer: Kelly Rudd, PharmD, BCPS, CACP, Pradaxa dabigatran Clinical Specialist, Anticoagulation, Bassett Medical Center, Savaysa edoxaban Cooperstown, NY Xarelto rivaroxaban From To Action Apixaban Argatroban/ Wait 12 hours after last dose of apixaban to initiate parenteral anticoagulant. In cases of Bivalirudin/ high bleeding risk, consider omitting initial bolus when transitioning to heparin infusion. Enoxaparin/ Dalteparin/ Fondaparinux/ Heparin Apixaban Warfarin When going from apixaban to warfarin, consider the use of parenteral anticoagulation as a bridge (eg, start heparin infusion or therapeutic enoxaparin AND warfarin 12 hours after last dose of apixaban and discontinue parenteral anticoagulant when INR is therapeutic). Apixaban affects INR so that initial INR measurements during the transition may not be useful for determining the appropriate dose of warfarin. Apixaban Betrixaban, Wait 12 hours from last dose of apixaban to initiate betrixaban, dabigatran, edoxaban, or Dabigatran, rivaroxaban. Edoxaban, or Rivaroxaban Argatroban Apixaban, Start apixaban, betrixaban, dabigatran, -
Legemiddelforbruket I Norge 2012–2016 Drug Consumption in Norway 2012–2016
2017:1 LEGEMIDDELSTATISTIKK EVT STIKKTITTEL INN HER Legemiddelforbruket i Norge 2012–2016 Drug Consumption in Norway 2012–2016 ISSN 1890-9647 Legemiddelforbruket i Norge 2012–2016 Drug Consumption in Norway 2012–2016 Solveig Sakshaug Hanne Strøm Christian Berg Hege Salvesen Blix Irene Litleskare Tove Granum Utgitt av Folkehelseinstituttet / Published by Norwegian Institute of Public Health Området for Psykisk og fysisk helse Avdeling for Legemiddelepidemiologi Mars 2017 Tittel/Title: Legemiddelstatistikk 2017:1 Legemiddelforbruket i Norge 2012-2016/Drug Consumption in Norway 2012-2016 Forfattere/Authors: Solveig Sakshaug (redaktør) Hanne Strøm Christian Berg Hege Salvesen Blix Irene Litleskare Tove Granum Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no/ The report is available as pdf format only and can be downloaded from the www.fhi.no Layout omslag: www.fetetyper.no Kontaktinformasjon/Contact information Folkehelseinstituttet/Norwegian Institute of Public Health P.O.Box 4404 Nydalen N-0403 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN 978-82-8082-826-2 elektronisk utgave Sitering/Citation: Sakshaug, S (red), Legemiddelforbruket i Norge 2012-2016 [Drug Consumption in Norway 2012-2016], Legemiddelstatistikk 2017:1, Oslo: Folkehelseinstituttet, 2017. Tidligere utgaver/Previous editions: 1977: Legemiddelforbruket i Norge 1974 - 1976 1978: Legemiddelforbruket i Norge 1975 - 1977 1980: Legemiddelforbruket i Norge 1975 - 1979 1981: Legemiddelforbruket i Norge 1980 1982: Legemiddelforbruket -
Antithrombotic Agents in the Management of Sepsis
Antithrombotic Agents in the Management of Sepsis !"#$ Loyola University Medical Center, Maywood, Illinois-60153, USA ABSTRACT Sepsis, a systemic inflammatory syndrome, is a response to infection and when associated with mul- tiple organ dysfunction is termed, severe sepsis. It remains a leading cause of mortality in the critically ill. The response to the invading bacteria may be considered as a balance between proinflammatory and antiinflammatory reaction. While an inadequate proinflammatory reaction and a strong antiinflammatory response could lead to overwhelming infection and death of the patient, a strong and uncontrolled pro- inflammatory response, manifested by the release of proinflammatory mediators may lead to microvas- cular thrombosis and multiple organ failure. Endotoxin triggers sepsis by releasing various mediators inc- luding tumor necrosis factor-alpha and interleukin-1(IL-1). These cytokines activate the complement and coagulation systems, release adhesion molecules, prostaglandins, leukotrienes, reactive oxygen speci- es and nitric oxide (NO). Other mediators involved in the sepsis syndrome include IL-1, IL-6 and IL-8; arachidonic acid metabolites; platelet activating factor (PAF); histamine; bradykinin; angiotensin; comp- lement components and vasoactive intestinal peptide. These proinflammatory responses are counterac- ted by IL-10. Most of the trials targeting the different mediators of proinflammatory response have failed due a lack of correct definition of sepsis. Understanding the exact pathophysiology of the disease will enable better treatment options. Targeting the coagulation system with various anticoagulant agents inc- luding antithrombin, activated protein C (APC), tissue factor pathway inhibitor (TFPI) is a rational appro- ach. Many clinical trials have been conducted to evaluate these agents in severe sepsis. -
Legemiddelforbruket I Norge 2014–2018 Drug Consumption in Norway 2014–2018
LEGEMIDDELSTATISTIKK 2019:1 Legemiddelforbruket i Norge 2014–2018 Drug Consumption in Norway 2014–2018 Legemiddelforbruket i Norge 2014–2018 Drug Consumption in Norway 2014–2018 Solveig Sakshaug Kristine Olsen Christian Berg Hege Salvesen Blix Live Storehagen Dansie Irene Litleskare Tove Granum Utgitt av Folkehelseinstituttet/Published by Norwegian Institute of Public Health Område for Helsedata og digitalisering Avdeling for Legemiddelstatistikk Mai 2019 Tittel/Title: Legemiddelstatistikk 2019:1 Legemiddelforbruket i Norge 2014–2018/Drug Consumption in Norway 2014–2018 Forfattere/Authors: Solveig Sakshaug (redaktør) Kristine Olsen Christian Berg Hege Salvesen Blix Live Storehagen Dansie Irene Litleskare Tove Granum Bestilling: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no The report is only available as pdf from www.fhi.no Grafisk design omslag: Fete Typer Kontaktinformasjon/Contact information: Folkehelseinstituttet/Norwegian Institute of Public Health P.O.Box 222 Skøyen N-0213 Oslo Tel: +47 21 07 70 00 ISSN:1890-9647 ISBN elektronisk utgave: 978-82-8406-011-8 Sitering/Citation: Sakshaug, S (red), Legemiddelforbruket i Norge 2014–2018 [Drug Consumption in Norway 2014–2018], Legemiddelstatistikk 2019:1, Oslo: Folkehelseinstituttet, 2019. Tidligere utgaver/Previous editions: 1977: Legemiddelforbruket i Norge 1974–1976 1978: Legemiddelforbruket i Norge 1975–1977 1980: Legemiddelforbruket i Norge 1975–1979 1981: Legemiddelforbruket i Norge 1980 1982: Legemiddelforbruket i Norge 1977–1981 1984: Legemiddelforbruket -
Icd-9-Cm (2010)
ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular -
Stenting Arterial Duct
McMullan et al Congenital Heart Disease Modified Blalock-Taussig shunt versus ductal stenting for palliation of cardiac lesions with inadequate pulmonary blood flow David Michael McMullan, MD,a Lester Cal Permut, MD,a Thomas Kenny Jones, MD,b Troy Alan Johnston, MD,b and Agustin Eduardo Rubio, MDb Objective: The modified Blalock-Taussig shunt is the most commonly used palliative procedure for infants with ductal-dependent pulmonary circulation. Recently, catheter-based stenting of the ductus arteriosus has been used by some centers to avoid surgical shunt placement. We evaluated the durability and safety of ductal stenting as an alternative to the modified Blalock-Taussig shunt. Methods: A single-institution, retrospective review of patients undergoing modified Blalock-Taussig shunt versus ductal stenting was performed. Survival, procedural complications, and freedom from reintervention were the primary outcome variables. Results: A total of 42 shunted and 13 stented patients with similar age and weight were identified. Survival to second-stage palliation, definitive repair, or 12 months was similar between the 2 groups (88% vs 85%; P ¼ .742). The incidence of surgical or catheter-based reintervention to maintain adequate pulmonary blood flow was 26% in the shunted patients and 25% in the stented patients (P ¼ 1.000). Three shunted patients (7%) required intervention to address contralateral pulmonary artery stenosis and 3 (7%) required surgical reintervention to address nonpulmonary blood flow-related complications. The need for ipsilateral or juxtaductal pulmonary artery intervention at, or subsequent to, second-stage palliation or definitive repair was similar between the 2 groups. Conclusions: Freedom from reintervention to maintain adequate pulmonary blood flow was similar between infants undergoing modified Blalock-Taussig shunt or ductal stenting as an initial palliative procedure.