PHYSICS News

Total Page:16

File Type:pdf, Size:1020Kb

PHYSICS News SCHOOL OF PHYSICS PHYSICS News SPRING 2014 Dr Julia Bryant (CAASTRO) installing the SAMI instrument on the Anglo-Australian Telescope at SAMI chief investigator A/Prof Scott Croom Siding Spring Observatory. SAMI sits in the telescope’s prime-focus cage, which originally held with SAMI. Photo by Tim Wheeler. photographic plates when the telescope was photographing the sky. Photo credit: SAMI Team. SYDNEY UNI TEAM PILOT ‘GOOGLE STREET VIEW’ OF GALAXIES A new home-grown instrument based on bundles of optical fibres is giving Australian astronomers the first ‘Google street view’ of the cosmos — incredibly detailed views of huge numbers of galaxies. Developed by researchers at the University of Sydney and “It’s a giant step,” said Dr James Allen of the ARC Centre the Australian Astronomical Observatory, the optical-fibre of Excellence for All-sky Astrophysics (CAASTRO) at the bundles can sample the light from up to 60 parts of a galaxy, University of Sydney. “Before, we could study one galaxy for a dozen galaxies at a time. at a time in detail, or lots of galaxies at once but in much By analysing the light’s spectrum astronomers can learn less detail. Now we have both the numbers and the detail.” how gas and stars move within each galaxy, where the young The Australian team is now a year or two ahead of its stars are forming and where the old stars live. This will allow international competition in this field. In just 64 nights it them to better understand how galaxies change over time has gathered data on 1000 galaxies, twice as many as the and what drives that change. previous largest project, and over the next two years it will study another 2000. 1 HEAD OF SCHOOL REPORT Welcome to another edition of the Physics News. As usual, there are many awards and achievements to acknowledge. The Harry Messel Award for Excellence Stewart, supervised by Peter Tuthill, is sponsored by the Physics Foundation won the prize for best student talk at to recognise excellent contributions the 14th Australian Space Research by a staff member to the School’s Conference held in Adelaide. Paul’s activities. It comes with a medal and talk was entitled “Cassini for Australian a cheque for $2,500 and is presented Stellar Science”. every three years or so. I am delighted The ARC Laureate Fellowships, the to advise that the recipient for 2014 is most senior offered by the Australian Eve Teran. Eve has been an extremely Research Council, were recently valuable member of the School for announced. Two of the sixteen many years, initially as Student Services Fellowships came to the University Officer and most recently as Acting of Sydney, both to members of the Tim Bedding, Head of School School Manager. It is wonderful to be School of Physics. able to recognise Eve’s contributions in this way. Many congratulations to Joss Bland-Hawthorn and Peter Robinson Finally, it is a pleasure to welcome As you can read elsewhere in this – this is a wonderful result! The Shiva Ford, who has been appointed newsletter, Elaine Sadler has been ARC Future Fellowships were also as the School’s Outreach Project appointed as Director of the ARC announced. These are for mid-career Officer. Shiva will be working with Centre of Excellence for All-sky researchers and three of the thirteen Chris Stewart on the inaugural Astrophysics (CAASTRO). She takes that came to the University of Sydney STEM Academy Teacher Enrichment over from Bryan Gaensler, who will are in the School of Physics. This is Workshop in November and next year’s be leaving at the end of the year to another excellent result, and many International Science School. She take up the directorship of the Dunlap congratulations to Krzysztof Bolejko, will be managing Alumni and Physics Institute in Toronto. On behalf of the Jan Hamann and Dennis Stello. Foundation activities and events, as School, I would like to thank Bryan for Bill Tango, a long-time member of well as contributing to our website and his tremendous leadership of CAASTRO publications, including this one! and to give my hearty congratulations the academic staff who retired a few and thanks to Elaine for taking on this years ago, was awarded the 2014 extremely important role. Fizeau Prize from the International Astronomical Union (IAU). The award, Congratulations to Mike Biercuk on announced during the Montreal SPIE being awarded a grant of $3.1M over 2014 conference, was for “lifetime the next three years from the US achievement” in forwarding the Army Research Office for a project on theory, technology and practice of “Quantum Control Engineering”. optical interferometry. Congratulations also go to two PhD Congratulations to Kostya Ostrikov, students on recent awards. Nicola an Honorary Professor in the Complex Asquith, supervised by Reza Hashemi- Systems group, who received the award Nezhad, received the Perelygin Young for ‹Excellence in Mathematics, Earth Scientist Award at the “26th Sciences, Chemistry and Physics’ International Conference on Nuclear at the 2014 NSW Science & Tracks in Solids” in Kobe, Japan, for her Engineering Awards. research work and her presentation at that conference. Meanwhile Paul 2 SYDNEY UNI TEAM PILOT ‘GOOGLE STREET VIEW’ OF GALAXIES CONT. CAASTRO funding was crucial in helping the team gain its “We’ve seen galactic winds in other galaxies, but we have no lead. “They had a great idea but it was going to take time to idea how common they really are, because we’ve never had the pull the resources together,” the organisation’s former director means to look for them systematically. Now we do,” said the Professor Bryan Gaensler. “CAASTRO was able to get it University of Sydney’s Associate Professor Scott Croom, happening fast.” a Chief Investigator on the project. Called SAMI (the Sydney-AAO Multi-Object Integral field The researchers are also uncovering the formation history of spectrograph), the optical-fibre instrument was installed on the galaxies by looking to see if they are rotating in a regular way or 4-m Anglo-Australian Telescope at Siding Spring Observatory in if the movement of their stars is random and disordered. northwest NSW last year. “There are hints that galaxies with random motions sit at the The technological leap is the ‘hexabundle’, sixty or more optical centres of groups of galaxies, where many smaller galaxies fibres close-packed and fused together, developed by the may have fallen into them,” said Dr Lisa Fogarty, a CAASTRO University of Sydney’s astrophotonics group led by Professor researcher at the University of Sydney who led this work. Joss Bland-Hawthorn. On Thursday 24th of July, the researchers released the first Using the new instrument, astronomers from the Australian set of data from the instrument to the worldwide astronomical National University and the University of Sydney have already community and Dr Allen gave a related presentation at the annual spotted ‘galactic winds’—streams of charged particles travelling scientific meeting of the Astronomical Society of Australia. at up to 3,000 km a second—from the centre of two galaxies. AIN UPDATE BY NATHAN APPS The AIN façade is now one-third Internally, a temporary wall has been The operational readiness committee complete. The remainder of the façade installed in the large void under the continues to meet to plan and organise will be completed progressively, a green roof. This provided a pressurised, the operation of the building after few panels per day. Many of the main clean and stable environment for the construction. The School is also building services (e.g., electricity, gas construction of the cleanroom. In independently looking at strategy, and water etc.) are either connected, other laboratory and plant areas, the space allocation and other matters in progress, or in the last stages of installation of electromagnetic shielding involving A28 and Physics staff. All planning. Most of these services are including aluminium and steel plates, these things and many more are being connected from Physics Road, will commence in mid-October. On the happening in parallel. The opening past the Eastern exit doors of A28, then roof, the cooling towers and chillers of the building is still scheduled for into the AIN site. A specific milestone are being installed and the last steel– mid-2015. is that the building will be connected to framed plant room is almost complete. main power in early January. Cleanroom fitout and temporary wall. AIN south facade with reflection of crane. 3 Anne Harley, a former lawyer and now The couple believe that philanthropy a farmer, says the experience of using has a crucial role to play in supporting FULFILLING science to improve soil and water the University in an increasingly quality has brought home to her the competitive financial environment, THE PROMISE practical importance of science. requiring it to seek a diversity of OF QUANTUM “We have been thinking about giving income streams. to the University for some time and “In a globalised world Australia will rise COMPUTING science was always where our interest and fall by the quality of its private lay for this. We were pleasantly and public institutions and support for surprised by the progress Mike’s lab universities is critical for that success.” A belief in the need has made in this challenging area Hugh Harley sees a role for business for business to reach and excited by its possible range of in that relationship: “If Australia is to game-changing applications,” Anne remain competitive it needs to be at out to the sciences Harley said. the forefront of scientific research and is only one of the Professor Biercuk commented, “Hugh commercialisation so I’m especially and Anne’s generous support will keen to break down barriers between motives for Anne and accelerate our lab’s efforts to bring the business and science communities.” Hugh Harley to donate about a new technological future “It is crucial for business and science enabled by the laws of quantum to engage each other; it will be a major half a million dollars physics.
Recommended publications
  • School of Physics Annual Report 2008 Contents
    The University of Sydney School of Physics Annual Report 2008 Contents 1 HEAD OF SCHOOL REPORT 2 STAFF 4 TEACHING HIGHLIGHTS 5 TALENTED STUDENT PROGRAM (TSP) 6 POSTGRADUATE STUDENTS 8 PRIZES AND SCHOLARSHIPS 8 STAFF AWARDS 10 OUTREACH 11 SCIENCE FOUNDATION FOR PHYSICS 11 ALUMNI Gamma ray transport in a liquid scintillation vial (see nuclear physics report page 26) 12 FEDERATION FELLOWS Front cover shows the rocket carrying the STEREO satellites as it blasts into the night 13 ARC DISCOVERY GRANTS sky from Cape Canaveral October 2008 15 RESEARCH HIGHLIGHTS 17 SYDNEY INSTITUTE FOR ASTRONOMY (SIFA) 20 COMPLEX SYSTEMS 22 CONDENSED MATTER THEORY 24 CUDOS – CENTRE FOR ULTRAHIGH BANDWIDTH DEVICES FOR OPTICAL SYSTEMS 25 HIGH ENERGY PHYSICS 26 INSTITUTE OF NUCLEAR SCIENCE 28 ISA – INTEGRATED SUSTAINABILITY ANALYSIS 29 QUANTUM PHYSICS 30 SYDNEY UNIVERSITY PHYSICS EDUCATION RESEARCH (SUPER) 31 PUBLICATIONS 31 BOOKS 31 BOOK CHAPTERS 31 JOURNAL ARTICLES 53 CONFERENCE SPEAKERS 56 CONFERENCE PAPERS © The School of Physics, The University of Sydney 2008. All rights reserved. Head of School Report PROFESSOR ANNE GREEN HEAD, SCHOOL OF PHYSICS THIS YEAR HAS BEEN AN EXCITING and busy year with a major It was a very exciting year for particle physics with the Large Hadron refurbishment project undertaken to provide new laboratories and Collider in CERN beginning operation. Three of our physicists, Drs office space to better support our growing numbers. We were pleased Kevin Varvell, Aldo Saavedra and Bruce Yabsley, of the High Energy to welcome 15 members of staff and graduate students from the now Research Group, have been part of the international team of 35 closed Optic Fibre Technology Centre; they are all now fully integrated countries collaborating on this massive project.
    [Show full text]
  • 2016 AUSTRALIA-CHINA Science, Technology
    2016 AUSTRALIA–CHINA Science, Technology, Commercialisation and Innovation Forum 2016 中-澳科技创新和产业化论坛 FORUM HANDBOOK 27-30 NOVEMBER 2016 Brisbane, Australia QCASE Forum Handbook 2016 WELCOME WELCOME FROM DR HUA GUO, FORUM CHAIR On behalf of the Forum Organising Committee and Chinese scientists and engineers in Queensland, it is my great pleasure to welcome you all to the inaugural Australia–China Science, Technology, Commercialisation and Innovation Forum. The Forum, initiated and hosted by the Queensland Chinese Association of Scientists and Engineers (QCASE), is an example of our continuous commitment and solid action in promoting and supporting scientific and technological collaboration between Australia and China. Innovation is of paramount importance to both Australia and China. The Forum, built on successful scientific collaboration in recent years and government agreements between Queensland and China, will focus on how to accelerate application and commercialisation of our ideas and research outcomes, and explore opportunities for collaboration in the energy and resources, advanced materials and manufacturing, health and medicine, environment and agriculture sectors for the mutual benefit of both our nations. We are very excited that the Forum will be attended by more than 200 delegates representing governments, industry, science and technology agencies and academia, and by some of the most outstanding and influential leaders in science and technology in Australia and China. The ideas you generate and the working relationships you build over the Forum will help realise the very substantial opportunities that lie ahead. I would like to take this opportunity to acknowledge the great support by the Queensland Government Department of Science, Information Technology and Innovation, the Ministry of Science and Technology of the People’s Republic of China, and The Consulate General of the People’s Republic of China in Brisbane.
    [Show full text]
  • Thursday 31St January 8:10 - 8:20 Official 2019 ISFM Opening Professor Xiaolin Wang, University of Wollongong
    Thursday 31st January 8:10 - 8:20 Official 2019 ISFM opening Professor Xiaolin Wang, University of Wollongong 8:20 - 8:30 University of Wollongong Welcome Professor Tim Marchant, Acting DVC (Research & Innovation) Professor Will Price, AIIM Executive Director Session TA - Plenary Session Chairs: Prof. Michael Fuhrer and Prof. Xiaolin Wang 8:30 - 9:00 TA.1: On the pairing mechanisms of high-temperature superconductors Professor Qikun Xue, Tsinghua University 9:00 - 9:30 TA.2: Semiconductor Nanowires for Optoelectronics and Energy Applications Professor Jagadish Chennupati, Australian National University 9:30 - 10:00 TA.3: Topological materials for low-energy electronics Professor Michael Fuhrer, Monash University 10:00 - 10:30 TA.4: Highlights from ISEM’s 25-Year history Professor Shi Xue Dou, University of Wollongong 10:30 - 10:50 Morning Tea Session T1 Session T2 Session T3 Liming Dai Huijun Zhao Yoshio Bando 10:50 - 11:10 *T1.1: Patters of *T2.1: Boron Nitride *T3.1: All-Inorganic critical current Nanomaterials: Perovskite Quantum flow near defects from Fundamental Dots Nanocomposites and interfaces in Research to and Large Amount superconductors Commercialisation Production by Tom Johannsen Ying Chen Microfluidic System University of Oslo Deakin University for the Application in Q-LCD and QLED Rushi Liu National University of Taiwan 11:10 - 11:25 T1.2: Thermal, T2.2: Graphitised T3.2: Quantum electrical and silicon carbide: a molecular devices for magneto-transport scalable approach for large-scale integration properties of 3D integrated
    [Show full text]
  • Printed Circuit Boards As Platform for Disposable Lab-On-A-Chip Applications”
    Macquarie University ResearchOnline This is the published version of: Christian Leiterer; Matthias Urban; Wolfgang Fritzsche; Ewa Goldys; David Inglis; “Printed circuit boards as platform for disposable lab-on-a-chip applications”. Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 96680X (December 22, 2015) Access to the published version: http://dx.doi.org/10.1117/12.2202413 Copyright: Copyright 2015 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Printed circuit boards as platform for disposable Lab-on-a-Chip applications Christian Leiterer,a,b Matthias Urban,b Wolfgang Fritzsche,b Ewa Goldys a and David Inglisa* aMacquarie University, Department of Physics and Engineering, 2109 Sydney, Australia bUniversity Jena / Leibniz-Institute of Photonic Technology, Albert-Einstein-Strasse 9, Jena, Germany Abstract. An increasing demand in performance from electronic devices has resulted in continuous shrinking of electronic components. This shrinkage has demanded that the primary integration platform, the printed circuit board (PCB), follow this same trend. Today, PCB companies offer ~100 micron sized features (depth and width) which mean they are becoming suitable as physical platforms for Lab-on-a-Chip (LOC) and microfluidic applications. Compared to current lithographic based fluidic approaches; PCB technology offers several advantages that are useful for this technology. These include: Being easily designed and changed using free software, robust structures that can often be reused, chip layouts that can be ordered from commercial PCB suppliers at very low cost (1 AUD each in this work), and integration of electrodes at no additional cost.
    [Show full text]
  • Report on First Australian – EU Graphene Workshop, 2018
    Report on First Australian – EU Graphene Workshop, 2018 Date and location: 17-19 October 2018, Adelaide and Sydney, Australia Chairs: Australia – Prof Dusan Losic (University of Adelaide) Dr Katie Green, Dr Adrian Murdoch, Dr Michael Seo (CSIRO – Commonwealth Science and Industrial Research Organisation) EU – Dr Ken Teo (AIXTRON) Summary: This workshop aims to foster information exchange and collaboration between Australian organisations and partners of the EU’s Graphene Flagship project with respect to Graphene and related materials (GRM). The programme was organised between two different cities (Adelaide/Sydney) over 3 days, with various site visits, to maximise the exposure of the participants to graphene activities performed in Australia. The workshop featured diverse research topics on GRM with 26 scientific presentations, 1 industry roundtable session, 1 working group session, 4 open discussions, 1 poster session, lab tours and social events. About 50 participants were present, including 10 industrial delegates from Australian graphene companies. 1 Adelaide, 17 October 2018 Figure 1: ARC Graphene Enabled Transformation Hub laboratory at University of Adelaide (left) and visit by the EU Graphene Flagship delegation (right) The Australian Research Council’s Graphene Enabled Industry Transformation Hub, a partnership between 4 Australian universities and industrial collaborators, is based at the University of Adelaide. The participants were given a tour of the Hub’s laboratories and introduced to its research, which included graphene production by exfoliation and graphene-use in composites, foams, fire-resistant paints and fertilizers. The participants also visited Silanna Semiconductor which featured an advanced laboratory with a multi-cluster molecular beam epitaxy system for III-V semiconductor and novel oxide deposition 6-inch wafers; these facilities are used to produce devices such as UV LEDs and power transistors.
    [Show full text]
  • Plasma Nanoscience: from Nano-Solids in Plasmas to Nano
    July 1, 2013 0:32 Advances in Physics AdvPhys-FINAL-3 Advances in Physics Vol. 62, No. 02 (pages 113-224), 18 June 2013, 1–110 REVIEW ARTICLE [Advances in Physics, v. 62, Issue 2 (18 June 2013), pp. 113-224 (2013); DOI: 10.1080/00018732.2013.808047] Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids K. Ostrikova ∗ , E. C. Neytsb & M. Meyyappanc aCSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070, Australia bUniversity of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium cNASA Ames Research Center Moffett Field, CA 94035, USA (21 May 2013) The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma- specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter. Contents 1. Introduction 1.1. Scope of plasma nanoscience research 1.2.
    [Show full text]
  • Sustainable Nanoscience for a Sustainable Future Kostya Ostrikov
    Sustainable nanoscience for a sustainable future Kostya Ostrikov Plasma Nanoscience Center Australia (PNCA), CSIRO Materials Science and Engineering. Abstract: Sustainability is commonly perceived as the capacity to endure some challenges, obstacles, stress, varied conditions, etc., and to continue normal or even improving operation. This concept has recently become global and is currently applied to economies, environment, ecosystems, industries, natural resource management, and several other fields of human activities. This presentation introduces the concept of sustainable nanoscience [1] and illustrates using a focused example of plasma-based growth of carbon nanotubes. This concept relates control of energy and matter at nanoscales (Grand Science Challenges) to practical applications that are relevant to a sustainable future of humankind (Grand Societal Challenges). Specific roles of plasma-related effects in nanoscale synthesis and processing that lead to superior properties and performance of nanomaterials in relevant applications are also examined [2]. The path toward the impact in the age of sustainable development is also discussed. Future opportunities of this research field to contribute to the solution of the problems of the sustainability age are also highlighted. [1] K. Ostrikov, IEEE Trans. Plasma Sci. 41, 716-724 (2013) [2] K. Ostrikov, E. C. Neyts, M. Meyyappan, Advances in Physics 62(2), 113-224 (2013). Bio: Kostya (Ken) Ostrikov is a CEO Science Leader, Australian Future Fellow (the first and so far one of the only
    [Show full text]
  • Contribution of Radicals and Ions in Catalyzed Growth of Single-Walled Carbon Nanotubes from Low-Temperature Plasmas
    University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 1-1-2015 Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas Z Marvi Sahand University of Technology S Xu Nanyang Technological University, Singapore G Foroutan Sahand University of Technology Kostya Ostrikov University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/aiimpapers Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons Recommended Citation Marvi, Z; Xu, S; Foroutan, G; and Ostrikov, Kostya, "Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas" (2015). Australian Institute for Innovative Materials - Papers. 1376. https://ro.uow.edu.au/aiimpapers/1376 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas Abstract The growth kinetics of single-walled carbon nanotubes (SWCNTs) in a low-temperature, low-pressure reactive plasma is investigated using a multiscale numerical simulation, including the plasma sheath and surface diffusion modules. The plasma-related effects on the characteristics of SWCNT growth are studied. It is found that in the presence of reactive radicals in addition to energetic ions inside the plasma sheath area, the effective carbon flux, and the growth rate of SWCNT increase. It is shown that the concentration of atomic hydrogen and hydrocarbon radicals in the plasma plays an important role in the SWCNT growth.
    [Show full text]
  • 6 International Symposium on Nanostructured Materials And
    th Symposium 7: 6 2:30 PM (ICACC‐S7‐003‐2012) Nanostructure and International Symposium Nanoheterojuction for High‐Efficiency on Nanostructured Photocatalytic and Photoelectrochemical Water Splitting (Invited) Materials and Liejin Guo*, Shaohua Shen, Xi'an Jiaotong University, China Nanocomposites 3:00 PM Break Monday, January 23, 2012 Nanomaterials for Nanomaterials for Photocatalysis, Solar Photocatalysis, Solar Hydrogen and Hydrogen and Thermoelectrics I Thermoelectrics II 1:30 PM‐3:20 PM 3:20 PM‐6:00 PM Room: Coquina Salon B Room: Coquina Salon B Session Chair(s): Palani Balaya, Gongxuan Lu Session Chair(s): Alberto Vomiero, Yi‐Bing Cheng 1:30 PM (ICACC‐S7‐001‐2012) Mesoporous Titanium 3:20 PM Oxide Spheres for High Efficiency Dye (ICACC‐S7‐004‐2012) Nanostructural Control Sensitized Solar Cells (Invited) in Conjugated Polymer/Metal Oxide Yi‐Bing Cheng*, Fuzhi Huang, Monash Nanohybrid Solar Cells (Invited) University, Australia; Dehong Chen, The Yasuhiro Tachibana*, Ali Azarifar, Satoshi University of Melbourne, Australia; Yang Chen, Makuta, RMIT University, Australia; Jun Terao, Monash University, Australia; Lu Cao, The Kyoto University, Japan; Shu Seki, Osaka University of Melbourne, Australia; Xiaoli University, Japan Zhang, Monash University, Australia; Rachel Caruso, The University of Melbourne, Australia 3:50 PM (ICACC‐S7‐005‐2012) Energy Conversion using 2:00 PM Nano‐structured Solar Cells (Invited) (ICACC‐S7‐002‐2012) Engineered metal oxide Satyanarayana R Gajjela, Wong Kim Hai, photoanodes for highly efficient excitonic Krishnamoorthy
    [Show full text]
  • Multimode Fibres: a Pathway Towards Deep-Tissue Fluorescence Microscopy”
    Macquarie University ResearchOnline This is the published version of: Martin Plöschner; Tomáš Tyc; Tomáš Cižmár; “Multimode fibres: a pathway towards deep-tissue fluorescence microscopy”. Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 966840 (December 22, 2015) Access to the published version: http://dx.doi.org/10.1117/12.2202355 Copyright: Copyright 2015 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Multimode fibre: a pathway towards deep tissue fluorescence microscopy Martin Plöschner*a,b, Tomáš Tycc, Tomáš Čižmára aSchool of Engineering, Physics and Mathematics, College of Art, Science & Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK; bDepartment of Physics and Astronomy, School of Physics and Engineering, Macquarie University, North Ryde, NSW, 2109, Australia; cDepartment of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic *[email protected] ABSTRACT Fluorescence microscopy has emerged as a pivotal platform for imaging in the life sciences. In recent years, the overwhelming success of its different modalities has been accompanied by various efforts to carry out imaging deeper inside living tissues. A key challenge of these efforts is to overcome scattering and absorption of light in such environments. Multiple strategies (e.g. multi-photon, wavefront correction techniques) extended the penetration depth to the current state-of-the-art of about 1000μm at the resolution of approximately 1μm. The only viable strategy for imaging deeper than this is by employing a fibre bundle based endoscope.
    [Show full text]
  • Front Matter: Volume 9668
    PROCEEDINGS OF SPIE Micro+Nano Materials, Devices, and Systems Benjamin J. Eggleton Stefano Palomba Editors 6–9 December 2015 Sydney, Australia Sponsored by The University of Sydney (Australia) CUDOS—An ARC Centre of Excellence (Australia) Cosponsored by NSW Government Trade and Investment (Australia) AOS—The Australian Optical Society (Australia) Office of Naval Research Global (United States) U.S. Army Research, Development and Engineering Command (United States) Published by SPIE Volume 9668 Proceedings of SPIE 0277-786X, V. 9668 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. SPIE Micro+Nano Materials, Devices, and Systems, edited by Benjamin J. Eggleton, Stefano Palomba Proc. of SPIE Vol. 9668, 966801 · © 2015 SPIE · CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2228503 Proc. of SPIE Vol. 9668 966801-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org. The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon. Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in SPIE Micro+Nano Materials, Devices, and Systems, edited by Benjamin J.
    [Show full text]