Notes on Caloplaca Lucifuga (Teloschistales, Ascomycota) in Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogenetic Study at the Generic Boundary Between the Lichen-Forming Fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)
Mycol. Res. 107 (11): 1266–1276 (November 2003). f The British Mycological Society 1266 DOI: 10.1017/S0953756203008529 Printed in the United Kingdom. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae) Ulrik SØCHTING1 and Franc¸ ois LUTZONI2 1 Department of Mycology, Botanical Institute, University of Copenhagen, O. Farimagsgade 2D, DK-1353 Copenhagen K, Denmark. 2 Department of Biology, Duke University, Durham, NC 27708-0338, USA. E-mail : [email protected] Received 5 December 2001; accepted 5 August 2003. A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results. INTRODUCTION Taxonomy of Teloschistaceae and its genera The Teloschistaceae is a well-delimited family of Hawksworth & Eriksson (1986) assigned the Teloschis- lichenized fungi. -
Interface Between Fungi and Green Algae in Lichen Associations
Botany Interface between fungi and green algae in lichen associations Journal: Botany Manuscript ID cjb-2017-0037.R2 Manuscript Type: Review Date Submitted by the Author: 07-May-2017 Complete List of Authors: Piercey-Normore, Michele; Memorial University of NL, Science and the Environment Athukorala,Draft Sarangi; University of Peradeniya, Department of Botany Is the invited manuscript for consideration in a Special Fungi on the Edge Issue? : Keyword: interaction, lichen fungi, resynthesis, symbiont communication https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 34 Botany 1 Mini review - Botany Interface between fungi and green algae in lichen associations Michele D. Piercey-Normore 1 and Sarangi N. P. Athukorala 2 1School of Science and the Environment, Memorial University of NL (Grenfell campus), Corner Brook, NL, Canada, A2K 5G4, [email protected] 2Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka, 20400, [email protected] Draft Corresponding author: M. D. Piercey-Normore, School of Science and the Environment, Memorial University of NL (Grenfell campus), Corner Brook, NL, Canada, A2K 5G4, email: mpiercey- [email protected] , phone: (709) 637-7166. https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 34 2 Abstract It is widely recognized that the lichen is the product of a fungus and a photosynthetic partner (green alga or cyanobacterium) but its acceptance was slow to develop throughout history. The development of powerful microscopic and other lab techniques enabled better understanding of the interface between symbionts beginning with the contentious concept of the dual nature of the lichen thallus. Even with accelerating progress in understanding the interface between symbionts, much more work is needed to reach a level of knowledge consistent with that of other fungal interactions. -
New Records of Crustose Teloschistaceae (Lichens, Ascomycota) from the Murmansk Region of Russia
vol. 37, no. 3, pp. 421–434, 2016 doi: 10.1515/popore-2016-0022 New records of crustose Teloschistaceae (lichens, Ascomycota) from the Murmansk region of Russia Ivan FROLOV1* and Liudmila KONOREVA2,3 1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-37005, Czech Republic 2 Laboratory of Flora and Vegetations, The Polar-Alpine Botanical Garden and Institute KSC RAS, Kirovsk, Murmansk region, 184209, Russia 3 Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, St. Petersburg, 197376, Russia * corresponding author <[email protected]> Abstract: Twenty-three species of crustose Teloschistaceae were collected from the northwest of the Murmansk region of Russia during field trips in 2013 and 2015. Blas- tenia scabrosa is a new combination supported by molecular data. Blastenia scabrosa, Caloplaca fuscorufa and Flavoplaca havaasii are new to Russia. Blastenia scabrosa is also new to the Caucasus Mts and Sweden. Detailed morphological measurements of the Russian specimens of these species are provided. Caloplaca exsecuta, C. grimmiae and C. sorocarpa are new to the Murmansk region. The taxonomic position of C. alcarum is briefly discussed. Key words: Arctic, Rybachy Peninsula, Caloplaca s. lat., Blastenia scabrosa. Introduction Although the Murmansk region is one of the best studied regions of Russia in terms of lichen diversity, there are numerous reports in recent literature of new discoveries there (e.g. Fadeeva et al. 2013; Konoreva 2015; Melechin 2015; Urbanavichus 2015). Several localities in the northwest of the Murmansk region, mainly on the Pechenga Tundra Mountains and the Rybachy Peninsula, were visited in 2013 and 2015. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K. -
Huneckia Pollinii </I> and <I> Flavoplaca Oasis
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 October–December 2017—Volume 132, pp. 895–901 https://doi.org/10.5248/132.895 Huneckia pollinii and Flavoplaca oasis newly recorded from China Cong-Cong Miao 1#, Xiang-Xiang Zhao1#, Zun-Tian Zhao1, Hurnisa Shahidin2 & Lu-Lu Zhang1* 1 Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China 2 Lichens Research Center in Arid Zones of Northwestern China, College of Life Science and Technology, Xinjiang University, Xinjiang , 830046 , P. R. China * Correspondence to: [email protected] Abstract—Huneckia pollinii and Flavoplaca oasis are described and illustrated from Chinese specimens. The two species and the genus Huneckia are recorded for the first time from China. Keywords—Asia, lichens, taxonomy, Teloschistaceae Introduction Teloschistaceae Zahlbr. is one of the larger families of lichenized fungi. It includes three subfamilies, Caloplacoideae, Teloschistoideae, and Xanthorioideae (Gaya et al. 2012; Arup et al. 2013). Many new genera have been proposed based on molecular phylogenetic investigations (Arup et al. 2013; Fedorenko et al. 2012; Gaya et al. 2012; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d). Currently, the family contains approximately 79 genera (Kärnefelt 1989; Arup et al. 2013; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d; Søchting et al. 2014a,b). Huneckia S.Y. Kondr. et al. was described in 2014 (Kondratyuk et al. 2014a) based on morphological, anatomical, chemical, and molecular data. It is characterized by continuous to areolate thalli, paraplectenchymatous cortical # Cong-Cong Miao & Xiang-Xiang Zhao contributed equally to this research. -
Specific Fungal-Algal Interaction in Usnea Hakonensis
Kono et al. BMC Genomics (2020) 21:671 https://doi.org/10.1186/s12864-020-07086-9 RESEARCH ARTICLE Open Access In vitro resynthesis of lichenization reveals the genetic background of symbiosis- specific fungal-algal interaction in Usnea hakonensis Mieko Kono1,2* , Yoshiaki Kon3, Yoshihito Ohmura4, Yoko Satta1 and Yohey Terai1 Abstract Background: Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. Results: This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. Conclusion: From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. -
A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, -
Symbiotic Microalgal Diversity Within Lichenicolous Lichens and Crustose
www.nature.com/scientificreports OPEN Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts Patricia Moya 1*, Arantzazu Molins 1, Salvador Chiva 1, Joaquín Bastida 2 & Eva Barreno 1 This study analyses the interactions among crustose and lichenicolous lichens growing on gypsum biocrusts. The selected community was composed of Acarospora nodulosa, Acarospora placodiiformis, Diploschistes diacapsis, Rhizocarpon malenconianum and Diplotomma rivas-martinezii. These species represent an optimal system for investigating the strategies used to share phycobionts because Acarospora spp. are parasites of D. diacapsis during their frst growth stages, while in mature stages, they can develop independently. R. malenconianum is an obligate lichenicolous lichen on D. diacapsis, and D. rivas-martinezii occurs physically close to D. diacapsis. Microalgal diversity was studied by Sanger sequencing and 454-pyrosequencing of the nrITS region, and the microalgae were characterized ultrastructurally. Mycobionts were studied by performing phylogenetic analyses. Mineralogical and macro- and micro-element patterns were analysed to evaluate their infuence on the microalgal pool available in the substrate. The intrathalline coexistence of various microalgal lineages was confrmed in all mycobionts. D. diacapsis was confrmed as an algal donor, and the associated lichenicolous lichens acquired their phycobionts in two ways: maintenance of the hosts’ microalgae and algal switching. Fe and Sr were the most abundant microelements in the substrates but no signifcant relationship was found with the microalgal diversity. The range of associated phycobionts are infuenced by thallus morphology. Lichens are a well-known and reasonably well-studied examples of obligate fungal symbiosis 1,2. Tey have tra- ditionally been considered the symbiotic phenotype resulting from the interactions of a single fungal partner and one or a few photosynthetic partners. -
New Records of Lichens and Lichenicolous Fungi from Fuerteventura (Canary Islands), with Descriptions of Some New Species
Cryptogamie, Mycologie, 2006, 27 (4): 341-374 © 2006 Adac. Tous droits réservés New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species P.P.G.van den BOOM1 & J.ETAYO2 1 Arafura 16, NL-5691JA Son, the Netherlands, email: [email protected] 2 Navarro Villoslada 16, 3° dcha, E-31003, Pamplona, Spain, email: [email protected] Abstract – The flora of lichens and lichenicolous fungi of Fuerteventura (Canary Islands) has been studied. The recent catalogue of the Island was composed of 91 species. In the presented annotated list, 98 are additional records of the island, of which 29 species are new to the Canary Islands and among them Caloplaca fuerteventurae , Lecanactiscanariensis , Lichenostigmacanariense and L. episulphurella are described as new. Macaronesia / new taxa / taxonomy / first records / ecology / chemistry / biodiversity Resumen – Se estudia la flora liquénica y de hongos liquenícolas de la isla de Fuerteventura (Islas Canarias). El catálogo de líquenes y hongos liquenícolas de Fuerteventura se componía hasta el momento de 91 de la isla, mientras que en este trabajo se señalan 98 taxones nuevos para la isla, de los que 29 eran desconocidos en las Canarias. Caloplaca fuerteventurae, Lecanactis canariensis, Lichenostigma canariense y L. episulphurella se describen en este trabajo. INTRODUCTION During a one week trip to the Canary Island Fuerteventura in 2001 by the first author and a one week trip by the second author in 2003, lichens and lichenicolous fungi where collected on all available kind of substrata which was encountered. Most of the collected material has been identified and the results are presented below. -
Photobiont Relationships and Phylogenetic History of Dermatocarpon Luridum Var
Plants 2012, 1, 39-60; doi:10.3390/plants1020039 OPEN ACCESS plants ISSN 2223-7747 www.mdpi.com/journal/plants Article Photobiont Relationships and Phylogenetic History of Dermatocarpon luridum var. luridum and Related Dermatocarpon Species Kyle M. Fontaine 1, Andreas Beck 2, Elfie Stocker-Wörgötter 3 and Michele D. Piercey-Normore 1,* 1 Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mail: [email protected] 2 Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany; E-Mail: [email protected] 3 Department of Organismic Biology, Ecology and Diversity of Plants, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: Michele.Piercey-Normore@ad. umanitoba.ca; Tel.: +1-204-474-9610; Fax: +1-204-474-7588. Received: 31 July 2012; in revised form: 11 September 2012 / Accepted: 25 September 2012 / Published: 10 October 2012 Abstract: Members of the genus Dermatocarpon are widespread throughout the Northern Hemisphere along the edge of lakes, rivers and streams, and are subject to abiotic conditions reflecting both aquatic and terrestrial environments. Little is known about the evolutionary relationships within the genus and between continents. Investigation of the photobiont(s) associated with sub-aquatic and terrestrial Dermatocarpon species may reveal habitat requirements of the photobiont and the ability for fungal species to share the same photobiont species under different habitat conditions. The focus of our study was to determine the relationship between Canadian and Austrian Dermatocarpon luridum var. luridum along with three additional sub-aquatic Dermatocarpon species, and to determine the species of photobionts that associate with D. -
<I>Caloplaca</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/122.307 Volume 122, pp. 307–324 October–December 2012 Seven dark fruiting lichens of Caloplaca from China Guo-Li Zhou1#, Zun-Tian Zhao1#, Lei Lü2, De-Bao Tong1, Min-Min Ma1 & Hai-Ying Wang1* 1College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China 2Shandong Provincial Key Laboratory of Microbial Engineering, School of Food and Bioengineering, Shandong Polytechnic University, Jinan, 250353, P. R. China #These authors contributed equally. *Correspondence to: [email protected] Abstract —Detailed taxonomic descriptions with photos are presented for seven dark fruiting Caloplaca species found in China. Caloplaca albovariegata, C. atrosanguinea, and C. diphyodes are apparently new to Asia, C. bogilana, and C. variabilis are new to China, and C. conversa and C. pulicarioides are new to northern China. Key words —Ascomycota, Teloschistales, Teloschistaceae Introduction The large cosmopolitan genus Caloplaca (Teloschistaceae, Teloschistales, Lecanoromycetes, Ascomycota) was established by Theodor Fries in 1860 (Kirk et al. 2008). Caloplaca is characterized by a totally immersed to subfruticose crustose thallus, typically teloschistacean ascus, polarilocular ascospores, and various anthraquinones or no substances (Poelt & Pelleter 1984, Søchting & Olecha 1995). The genus reportedly comprises more than 500 species worldwide (Kirk et al. 2008), but only 59 species are known in China (Abbas et al. 1996, Aptroot & Seaward 1999, Arocena et al. 2003, Wei 1991, Xahidin et al. 2010, Zhao & Sun 2002). During our study of Lecanora Ach. in China, six Caloplaca species with black apothecial discs and one with a red-brown apothecial disc were found. -
Collecting and Recording Fungi
British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire.