Ikaeria Serusiauxii , a New Caloplaca-Like Lichen From

Total Page:16

File Type:pdf, Size:1020Kb

Ikaeria Serusiauxii , a New Caloplaca-Like Lichen From Plant and Fungal Systematics 65(1): 120–130, 2020 ISSN 2544-7459 (print) DOI: https://doi.org/10.35535/pfsyst-2020-0006 ISSN 2657-5000 (online) Ikaeria serusiauxii, a new Caloplaca-like lichen from Macaronesia and mainland Portugal, with a lichen checklist for Porto Santo Harrie J. M. Sipman1 & André Aptroot2,3 Abstract. The new species Ikaeria serusiauxii (Teloschistaceae, lichenized Ascomycetes) Article info is described from the Madeira Archipelago, Canary Islands and continental Portugal. It is Received: 12 Sept. 2019 a crustose lichen on twigs and branches of trees and shrubs in xerophytic maritime vegetation. Revision received: 22 Oct. 2019 Superficially it is similar to Caloplaca cerina and C. haematites, from which it differs by Accepted: 4 Nov. 2019 the often black apothecium margin, very thick spore septa, black pycnidium ostioles, and Published: 2 Jun. 2020 the presence of the pigment Cinereorufa-green instead of Sedifolia-grey. ITS sequences Associate Editor suggest Ikaeria aurantiellina (syn. Caloplaca aegatica) as the closest relative. Added is a preliminary lichen checklist for Porto Santo (Madeira Archipelago, Macaronesia). Nicolas Magain Key words: Taxonomy, lichens, diversity, island biology Introduction The Madeira Archipelago, one of the island groups of sequences were analysed using https://www.ebi.ac.uk/ Macaronesia, is situated in the Atlantic Ocean some Tools/msa/muscle/ with standard settings and http://iqtree. 500 km off the shore of NW Africa. Politically it belongs cibiv.univie.ac.at/ (Trifinopoulos et al. 2016) with standard to Portugal. Like the Canary Islands, it has a dry warm settings and sequence type = DNA (accessed 18 June climate except where higher mountains cause increased 2019). Branch support values were obtained with ultrafast precipitation. During a visit to Porto Santo, the second bootstrap (Hoang et al. 2018) implemented in IQ-TREE largest island of the Madeira Archipelago, for a lichen (Nguyen et al. 2015). mapping project (Sparrius et al. 2017), an unusual Vouchers are deposited in B, BR, M, MADJ and herb. Caloplaca-like, epiphytic lichen showed up frequently van den Boom. on shrubs and trees, which somewhat resembled C. cerina or C. haematites. Morphological and macromolecular Results and discussion analyses showed it to be an undescribed species, which is treated below. Further results of this expedition are For complete documentation of the new species, ITS presented at https://archive.bgbm.org/sipman/Zschackia/ sequences were generated. These gave a preliminary view PortoSanto/genuslist.htm, and a preliminary checklist for of the affinities of the new species. A BLAST search Porto Santo is presented below (Table 1). in Genbank in 2017 gave the surprising result that the closest relatives were in the genus Lecidea. A repeated Material and methods BLAST search in 2019 suggested an affinity with the genus Ikaeria, which was published meanwhile by Kon- Specimens were studied with a stereomicroscope and dratyuk et al. (2017). It comprises the single species a compound microscope in tap-water mounts. ITS Ikaeria aurantiellina, based on samples from Tenerife, sequences were generated by Alvalab (Spain). The Canary Islands. The genus was found to belong to the subfamily Teloschistoideae as sister to the genus Yoshi- muria, and not to the Caloplacoideae or Xanthorioideae 1 Botanischer Garten & Botanisches Museum, Freie Universität, Koe- where most crustose ‘Caloplaca’ species in Europe and nigin-Luise-Str. 6–8, D-14195 Berlin, Germany 2 BL Herbarium, G. v.d. Veenstraat 107, NL-3762 XK Soest, The the Mediterranean belong. Netherlands Following these suggestions, a comparison of the 3 Laboratório de Botânica / Liquenologia, Instituto de Biociências, Uni- new species with putative relatives was made. ITS versidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n, sequences, mostly downloaded from Genbank, were Bairro Universitário, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil aligned with Megalospora, Brigantiaea and Letrouitia * Corresponding author e-mail: [email protected] as outgroups, with Caloplaca cerina and C. haematites © 2020 W. Szafer Institute of Botany, Polish Academy of Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/) H. J. M. Sipman & A. Aptroot: Ikaeria serusiauxii, a new Caloplaca-like lichen from Macaronesia and Portugal 121 100 Yoshimuria spodoplaca LC490370 99 Yoshimuria galbinea KJ021251 61 Yoshimuria spodoplaca KJ021249 Yoshimuria galbinea KJ021250 100 Blastenia crenularia KC416117 73 Blastenia crenularia KC416115 100 Caloplaca obscurella AY313977 64 Caloplaca obscurella GU942737 100 Caloplaca haematites MN592662 97 Caloplaca haematites MN592663 100 Caloplaca fuscoatroides HQ234599 100 Caloplaca fuscoatroides MN592664 100 100 Pyrenodesmia albolutescens MN172427 Pyrenodesmia albolutescens MN172426 100 Variospora aurantia MN172429 100 Variospora aurantia AY233219 97 Variospora flavescens EU639601 52 Variospora flavescens EU639600 100 89 Caloplaca thracopontica JQ301668 88 100 Caloplaca thracopontica HM538525 Caloplaca cerina EU365861 79 Caloplaca cerina HM538548 100 Rufoplaca arenaria KT934385 Rufoplaca arenaria KF007908 100 Haloplaca sorediella MN586955 100 Haloplaca sorediella KC179293 99 100 Haloplaca suaedae HM582200 Haloplaca suaedae HM582197 93 Lazarenkoiopsis ussuriensis KY614418 100 Josefpoeltia sorediosa KF264646 67 100 100 Josefpoeltia sorediosa KF264645 100 Josefpoeltia parva AM697883 Josefpoeltia parva AM292858 99 Wetmoreana appressa KC179332 100 Wetmoreana decipioides KF264644 Wetmoreana decipioides KF264643 100 100 Ikaeria serusiauxii MN586959 Ikaeria serusiauxii MN586960 100 Ikaeria serusiauxii MN586958 51 Ikaeria aurantiellina KY614411 87 100 Ikaeria aurantiellina KY614412 Ikaeria aurantiellina KY614414 96 Ikaeria aurantiellina MN586956 Ikaeria aurantiellina MN586957 100 Calogaya decipiens KY439886 100 Calogaya decipiens KC179344 100 Calogaya arnoldii KY748968 97 Calogaya arnoldii KY748966 100 62 Flavoplaca oasis KR902658 Flavoplaca oasis HM582158 100 100 97 Flavoplaca limonia EU563467 100 Flavoplaca limonia EU563408 65 Flavoplaca arcis EU563454 Flavoplaca arcis EU563438 100 45 Fominiella skii HM582188 70 Fominiella skii HM582194 100 Athallia pyracea JN813392 Athalia pyracea KT695356 100 Scythioria phlogina EU563460 98 Scythioria phlogina GU942736 72 80 100 Dufourea flammea AJ320132 98 Dufourea flammea AM408396 100 89 Dufourea ligulata AM292813 Dufourea ligulata AM292807 100 100 Xanthoria parietina AM292808 Xanthoria parietina KF589956 Solitaria chrysophthalma MN592665 100 Xanthocarpia lactea KF007907 100 Xanthocarpia lactea KC416128 99 Xanthocarpia ochracea JQ301663 Xanthocarpia ochracea EU639620 100 Brigantiaea tricolor JQ301656 91 Brigantiaea leucoxantha JQ301654 100 Letrouitia parabola JQ301675 100 Letrouitia subvulpina JQ301676 Letrouitia vulpina JQ301677 98 Megalospora pruinata JQ301680 99 Megalospora tuberculosa JQ301682 Megalospora sulphurata JQ301681 Figure 1. Phylogenetic tree from ITS sequences, with UFBootstrap values, of Ikaeria serusiauxii and selected Teloschistaceae. I. serusiauxii appears not closely related to Caloplaca cerina or C. haematites (blue) and falls outside the most frequent subfamilies in Macaronesia and Europe, i.e. Caloplacoideae (green clade) and Xanthorioideae (brown clade). Its closest relative is I. aurantiellina (black), which is included in Teloschistoideae (blue clade) in multilocus trees. Terminal bootstrap values omitted. 122 Plant and Fungal Systematics 65(1): 120–130, 2020 as potential relatives, with the genus Ikaeria, and with a checklist, including information on whether TLC was selected representatives of the three main groups of done, and we release all newly generated ITS sequences, Teloschistaceae, the subfamilies Xanthorioideae, including for groups for which no conclusive taxonomy Caloplacoideae and Teloschistoideae (Arup et al. 2013). is settled yet. The resulting tree (Fig. 1) shows that the new species is clearly distinct from C. cerina and C. haematites, Ikaeria serusiauxii Sipman, sp. nov. (Figs 2–3) and that it has Ikaeria aurantiellina as the closest rela- MycoBank MB 833026 tive. Therefore the new species is included in the genus Diagnosis: similar to Caloplaca cerina in its anthraquinone-free Ikaeria. thallus and apothecia with orange discs and often grey margin, From Porto Santo, where the new species was rec- but differing in having black pycnidium ostioles, thick ascospore ognized first, few lichen species have been reported so septa, and the presence of the pigment Cinereorufa-green instead far. Krog & Østhagen (1980) and Krog (1990) reported of Sedifolia-grey. Ramalina species, and Haugan (1992) a species of Type: Portugal, Madeira Islands, Porto Santo: E part, lower Anzia. These authors discovered remarkable lichen slopes N of Pico do Facho; ~350 m; 33°05.2′N, 16°19.3′W; endemism on the island. Short lists of additional species epiphytes on fallen Pinus trees on slope; 2 March 2016; H. Sipman 62971 (B 60 0200928 – holotype; MADJ – isotype). were published by Follmann (1990), Carvalho et al. ITS sequence: MN586960; LSU: MN586916: SSU: MN586910. (2008) and Sparrius et al. (2017). Some recent monog- raphers included material from the island, in particular Description. Thallus continuous, ~1–3 cm wide, grey, Timdal (1992) on Toninia. The presented checklist in shade with a greenish or slightly brownish tinge, not (Table 1) is based mainly on the
Recommended publications
  • Molecular Phylogenetic Study at the Generic Boundary Between the Lichen-Forming Fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)
    Mycol. Res. 107 (11): 1266–1276 (November 2003). f The British Mycological Society 1266 DOI: 10.1017/S0953756203008529 Printed in the United Kingdom. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae) Ulrik SØCHTING1 and Franc¸ ois LUTZONI2 1 Department of Mycology, Botanical Institute, University of Copenhagen, O. Farimagsgade 2D, DK-1353 Copenhagen K, Denmark. 2 Department of Biology, Duke University, Durham, NC 27708-0338, USA. E-mail : [email protected] Received 5 December 2001; accepted 5 August 2003. A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results. INTRODUCTION Taxonomy of Teloschistaceae and its genera The Teloschistaceae is a well-delimited family of Hawksworth & Eriksson (1986) assigned the Teloschis- lichenized fungi.
    [Show full text]
  • A Study on Rare and Noteworthy Lichenized Ascomycetes from Sardinia (Italy)
    ©Biologiezentrum Linz, Austria; download unter www.zobodat.at NEUWIRTH • Noteworthy lichenized ascomycetes from Sardinia STAPFIA 109 (2018): 181–196 A study on rare and noteworthy lichenized ascomycetes from Sardinia (Italy) GERHARD NEUWIRTH* Abstract: The study reports about remarkable lichen species from the Mediterranean region, collected from various substrates during a one-week trip through Sardinia in May 2018. One of them was recorded for the first time in Sardinia and thirty-two lichenized ascomycetes could be classified as either extremely rare, very rare or rare. The aim of this publication is to contribute to the lichen flora by means of a photographic documentation including short comments on rare species and additional information about the collecting sites. A species list of all recorded taxa is provided. Zusammenfassung: Die Studie berichtet über bemerkenswerte Flechtenarten aus dem Mittelmeerraum, gesammelt auf verschiedenen Substraten während einer einwöchigen Fahrt durch Sardinien im Mai 2018. Eine Art wurde erstmals in Sardinien belegt und 32 lichenisierte Ascomyceten konnten als extrem selten bis selten eingeordnet werden. Das Ziel dieser Publikation ist ein Beitrag zur Flechtenflora mithilfe einer fotografischen Dokumentation inklusive kurzer Kommentare über seltene Arten und zusätzliche Informationen über den Fundort. Eine Liste aller belegten Taxa wird zur Verfügung gestellt. Key words: Mediterranean region, rare records, taxonomy, photographic documentation. 1Correspondence to: [email protected] Rabenberg 18, 4911 Tumeltsham, Austria INTRODUCTION Modern literature on these topics refers to ZEDDA & SIPMAN (2001) who discussed a special group of lichens on Juniperus The second largest island of the Mediterranean region cove- oxycedrus. NIMIS & MARTELLOS (2002) provided a key for the 2 res an area of 24,090 km and is characterized by a high diversity identification of terricolous lichens in Italy.
    [Show full text]
  • New Records of Crustose Teloschistaceae (Lichens, Ascomycota) from the Murmansk Region of Russia
    vol. 37, no. 3, pp. 421–434, 2016 doi: 10.1515/popore-2016-0022 New records of crustose Teloschistaceae (lichens, Ascomycota) from the Murmansk region of Russia Ivan FROLOV1* and Liudmila KONOREVA2,3 1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-37005, Czech Republic 2 Laboratory of Flora and Vegetations, The Polar-Alpine Botanical Garden and Institute KSC RAS, Kirovsk, Murmansk region, 184209, Russia 3 Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, St. Petersburg, 197376, Russia * corresponding author <[email protected]> Abstract: Twenty-three species of crustose Teloschistaceae were collected from the northwest of the Murmansk region of Russia during field trips in 2013 and 2015. Blas- tenia scabrosa is a new combination supported by molecular data. Blastenia scabrosa, Caloplaca fuscorufa and Flavoplaca havaasii are new to Russia. Blastenia scabrosa is also new to the Caucasus Mts and Sweden. Detailed morphological measurements of the Russian specimens of these species are provided. Caloplaca exsecuta, C. grimmiae and C. sorocarpa are new to the Murmansk region. The taxonomic position of C. alcarum is briefly discussed. Key words: Arctic, Rybachy Peninsula, Caloplaca s. lat., Blastenia scabrosa. Introduction Although the Murmansk region is one of the best studied regions of Russia in terms of lichen diversity, there are numerous reports in recent literature of new discoveries there (e.g. Fadeeva et al. 2013; Konoreva 2015; Melechin 2015; Urbanavichus 2015). Several localities in the northwest of the Murmansk region, mainly on the Pechenga Tundra Mountains and the Rybachy Peninsula, were visited in 2013 and 2015.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • Steciana Doi:10.12657/Steciana.020.008 ISSN 1689-653X
    2016, Vol. 20(2): 63–72 Steciana doi:10.12657/steciana.020.008 www.up.poznan.pl/steciana ISSN 1689-653X LICHENS AS INDICATORS OF AIR POLLUTION IN ŁOMŻA ANNA MATWIEJUK, PAULINA CHOJNOWSKA A. Matwiejuk, P. Chojnowska, Institute of Biology, University of Bialystok, Konstanty Ciołkowski 1 J, 15-245 Białystok, Poland, e-mail: [email protected], [email protected] (Received: December 9, 2015. Accepted: March 29, 2016) ABSTRACT. Research using lichens as bioindicators of air pollution has been conducted in the city of Łomża. The presence of indicator species of epiphytic and epilithic lichens has been analysed. A 4-point lichen scale has been developed for the test area, on the basis of which four lichenoindication zones have been deter- mined. The least favourable conditions for lichen growth have been recorded in the city center. Green areas and open spaces are the areas with the most favourable impact of the urban environment on lichen biota. KEY WORDS: air pollution, biodiversity, lichens, urban environment INTRODUCTION terised by high resistance to factors such as extreme temperatures, lack of water and short growing peri- Lichens (lichenized fungi, Fungi lichenisati) are symbi- od, yet highest sensitivity to air pollution (Fałtyno­ otic organisms, created in most cases by an associa- wicz 1995). For more than 140 years lichens have tion of green algae (Chlorophyta) or blue-green algae been considered one of the best bioindicators of air (Cyanobacteria) and fungi, especially ascomycetes pollution (NYLANDER 1866). (Ascomycota) (NASH 1996, PURVIS 2000). They are Areas with particularly heavy impact of civili- mushrooms with a specific nutritional strategy, in- zation on the environment are cities.
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Huneckia Pollinii </I> and <I> Flavoplaca Oasis
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 October–December 2017—Volume 132, pp. 895–901 https://doi.org/10.5248/132.895 Huneckia pollinii and Flavoplaca oasis newly recorded from China Cong-Cong Miao 1#, Xiang-Xiang Zhao1#, Zun-Tian Zhao1, Hurnisa Shahidin2 & Lu-Lu Zhang1* 1 Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China 2 Lichens Research Center in Arid Zones of Northwestern China, College of Life Science and Technology, Xinjiang University, Xinjiang , 830046 , P. R. China * Correspondence to: [email protected] Abstract—Huneckia pollinii and Flavoplaca oasis are described and illustrated from Chinese specimens. The two species and the genus Huneckia are recorded for the first time from China. Keywords—Asia, lichens, taxonomy, Teloschistaceae Introduction Teloschistaceae Zahlbr. is one of the larger families of lichenized fungi. It includes three subfamilies, Caloplacoideae, Teloschistoideae, and Xanthorioideae (Gaya et al. 2012; Arup et al. 2013). Many new genera have been proposed based on molecular phylogenetic investigations (Arup et al. 2013; Fedorenko et al. 2012; Gaya et al. 2012; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d). Currently, the family contains approximately 79 genera (Kärnefelt 1989; Arup et al. 2013; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d; Søchting et al. 2014a,b). Huneckia S.Y. Kondr. et al. was described in 2014 (Kondratyuk et al. 2014a) based on morphological, anatomical, chemical, and molecular data. It is characterized by continuous to areolate thalli, paraplectenchymatous cortical # Cong-Cong Miao & Xiang-Xiang Zhao contributed equally to this research.
    [Show full text]
  • Catenarina (Teloschistaceae, Ascomycota), a New Southern Hemisphere Genus with 7-Chlorocatenarin
    The Lichenologist 46(2): 175–187 (2014) 6 British Lichen Society, 2014 doi:10.1017/S002428291300087X Catenarina (Teloschistaceae, Ascomycota), a new Southern Hemisphere genus with 7-chlorocatenarin Ulrik SØCHTING, Majbrit Zeuthen SØGAARD, John A. ELIX, Ulf ARUP, Arve ELVEBAKK and Leopoldo G. SANCHO Abstract: A new genus, Catenarina (Teloschistaceae, Ascomycota), with three species is described from the Southern Hemisphere, supported by molecular data. All species contain the secondary metabolite 7-chlorocatenarin, previously unknown in lichens. Catenarina desolata is a non-littoral, lichenicolous species found on volcanic and soft sedimentary rock at 190–300 m in and near steppes in southernmost Chile and on the subantarctic island, Kerguelen. Catenarina vivasiana grows on maritime rocks and on rock outcrops in lowland Nothofagus forests, but has also been found at alti- tudes up to c. 580 m on moss and detritus on outcrops in Tierra del Fuego. The Antarctic species Caloplaca iomma is transferred to Catenarina based on chemical data; it grows on rocks near the coast in maritime Antarctica. Key words: Antarctica, Argentina, Caloplaca, Chile, HPLC, Kerguelen Island, lichen metabolites, molecular phylogeny Accepted for publication 18 November 2013 Introduction circumscribe with classical morphological, anatomical and secondary chemical char- The lichen family Teloschistaceae, with more acters. However, in some cases, secondary than 1000 species published worldwide metabolites provide synapomorphic charac- (Søchting & Lutzoni 2003; Gaya et al. ters, such as in the genus Shackletonia (Arup 2012), is currently receiving considerable et al. 2013). attention in order to subdivide the family Tierra del Fuego and southern Patagonia into molecularly-based genera (Arup et al. have recently been subjected to intensive 2013).
    [Show full text]
  • A Provisional Checklist of the Lichens of Belarus
    Opuscula Philolichenum, 17: 374-479. 2018. *pdf effectively published online 31December2018 via (http://sweetgum.nybg.org/philolichenum/) A Provisional Checklist of the Lichens of Belarus ANDREI TSURYKAU1 ABSTRACT. – A total of 606 species and five subspecific taxa of lichens and allied fungi are documented from Belarus based on combined historical (pre-1980) and modern (post-1980) records. Of these, 50 (8.3%) are represented by only historical reports, 235 (38.8%) are represented by only modern vouchers, and 310 (51.2%) are represented by both historical and modern records. Eleven species are known only from generalized published reports that lacked specific location data. Eighty-eight species are excluded as erroneous reports, or considered as doubtful records. KEYWORDS. – Biodiversity, distribution, lichenized fungi, historical baseline. INTRODUCTION Published accounts of the lichens of Belarus date to the end of the 18th century (Gilibert 1781). In the first phase of lichenological discovery in the country (1780–1900) lichens did not attract special attention and were reported among the general lists of vascular plants and fungi. However, 49 species were reported by the French botanist J.E. Gilibert, the Russian ethnographer of Belarusian origin N. Downar (Dovnar-Zapol'skiy) and Polish botanists K. Filipowicz and F. Błoński (Błoński 1888, 1889; Downar 1861; Filipowicz 1881; Gilibert 1781, 1792). In the early 20th century (1900–1925), there was a second phase of lichenological discovery in Belarus. During that time, Belarusian pioneer lichenologist V.P. Savicz and his wife L.I. Ljubitzkaja (later Savicz-Ljubitzkaja) reported 91 species new to the country (Ljubitzkaja 1914; Savicz 1909, 1910, 1911, 1925; Savicz & Savicz 1924; Wyssotzky et al.
    [Show full text]
  • Taxonomic Study of the Genus Anzia (Lecanorales, Lichenized Ascomycota) from Hengduan Mountains, China
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273766529 Taxonomic study of the genus Anzia (Lecanorales, lichenized Ascomycota) from Hengduan Mountains, China Article in The Lichenologist · March 2015 Impact Factor: 1.45 · DOI: 10.1017/S0024282914000644 READS 60 8 authors, including: Xinyu Wang Chinese Academy of Sciences 41 PUBLICATIONS 131 CITATIONS SEE PROFILE Bernard Goffinet University of Connecticut 155 PUBLICATIONS 2,761 CITATIONS SEE PROFILE Available from: Xinyu Wang Retrieved on: 03 June 2016 The Lichenologist 47(2): 99–115 (2015) r British Lichen Society, 2015 doi:10.1017/S0024282914000644 Taxonomic study of the genus Anzia (Lecanorales, lichenized Ascomycota) from Hengduan Mountains, China Xin Yu WANG, Bernard GOFFINET, Dong LIU, Meng Meng LIANG, Hai Xia SHI, Yan Yun ZHANG, Jun ZHANG and Li Song WANG Abstract: Analyses of morphological, anatomical, chemical and DNA sequences led to the recognition of ten species of Anzia in the Hengduan Mountains, which harbour all species known from China, including A. pseudocolpota sp.nov.andA. hypomelaena comb.&stat.nov.Furthermore,populations similar to A. hypoleucoides but with narrow lobes and a yellow-orange pigmented medulla may be a phylogenetically distinct species tentatively recognized as A. aff. hypoleucoides. The species are primarily distinguished by the presence or absence of a central axis, the colour and shape of the spongy cushion and the nature of the secondary compounds. A key to all known species of Anzia from China is presented. Key words: lichens, molecular phylogeny, Parmeliaceae, taxonomy, Yunnan Province Accepted for publication 7 November 2014 Introduction the asci containing eight spores and the yellow- green upper cortex (Darbishire 1912).
    [Show full text]
  • New Records of Lichens and Lichenicolous Fungi from Fuerteventura (Canary Islands), with Descriptions of Some New Species
    Cryptogamie, Mycologie, 2006, 27 (4): 341-374 © 2006 Adac. Tous droits réservés New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species P.P.G.van den BOOM1 & J.ETAYO2 1 Arafura 16, NL-5691JA Son, the Netherlands, email: [email protected] 2 Navarro Villoslada 16, 3° dcha, E-31003, Pamplona, Spain, email: [email protected] Abstract – The flora of lichens and lichenicolous fungi of Fuerteventura (Canary Islands) has been studied. The recent catalogue of the Island was composed of 91 species. In the presented annotated list, 98 are additional records of the island, of which 29 species are new to the Canary Islands and among them Caloplaca fuerteventurae , Lecanactiscanariensis , Lichenostigmacanariense and L. episulphurella are described as new. Macaronesia / new taxa / taxonomy / first records / ecology / chemistry / biodiversity Resumen – Se estudia la flora liquénica y de hongos liquenícolas de la isla de Fuerteventura (Islas Canarias). El catálogo de líquenes y hongos liquenícolas de Fuerteventura se componía hasta el momento de 91 de la isla, mientras que en este trabajo se señalan 98 taxones nuevos para la isla, de los que 29 eran desconocidos en las Canarias. Caloplaca fuerteventurae, Lecanactis canariensis, Lichenostigma canariense y L. episulphurella se describen en este trabajo. INTRODUCTION During a one week trip to the Canary Island Fuerteventura in 2001 by the first author and a one week trip by the second author in 2003, lichens and lichenicolous fungi where collected on all available kind of substrata which was encountered. Most of the collected material has been identified and the results are presented below.
    [Show full text]