Boronia Microphylla

Total Page:16

File Type:pdf, Size:1020Kb

Boronia Microphylla Boronia microphylla Family: Rutaceae Distribution: Open forests and heathlands of New South Wales and south-eastern Queensland. Common No generally accepted common name Name: Derivation of Boronia....after Fransesco Borone, an 18th century Name: Italian botanist. microphylla....from Greek micro, small and phyllon, a leaf Conservation Not considered to be at risk in the wild. Status: General Description: The genus Boronia is one of the best known of all Australian plants. There are approximately 95 species, all but one of which occur only in Australia. The majority of species are found in south-western Australia. Boronia microphylla Photo: Brian Walters Boronia microphylla is a species from eastern Australia. It occurs over a fairly area range but only extends as far west as the Great Dividing Range. It is a small shrub of up to 1 metre in height and is usually found in moist, protected areas. The flowers are 4-petalled of a star-like appearance similar to a number of other species found in the same general areas (eg.B.pinnata, B.thujona, B.florabunda) and are deep pink in colour. They are about 10mm in diameter. Like the species mentioned, the foliage of B.microphylla is pinnate (compound leaves made up of a number of leaflets) but is distinguished by its small leaflets which are less than 1cm long. B.microphylla has been in cultivation for many years and is a very desirable garden plant. Although it has proven to be easier to maintain than many other members of the genus, it cannot be regarded as an easy plant for the non-enthusiast. It requires a well drained, protected position and an assured supply of water. In common with most members of the Rutaceae, propagation of B.microphylla from seed is difficult but cuttings usually strike readily from current season's growth..
Recommended publications
  • Winter Edition 2020 - 3 in This Issue: Office Bearers for 2017
    1 Australian Plants Society Armidale & District Group PO Box 735 Armidale NSW 2350 web: www.austplants.com.au/Armidale e-mail: [email protected] Crowea exalata ssp magnifolia image by Maria Hitchcock Winter Edition 2020 - 3 In this issue: Office bearers for 2017 ......p1 Editorial …...p2Error! Bookmark not defined. New Website Arrangements .…..p3 Solstice Gathering ......p4 Passion, Boers & Hibiscus ......p5 Wollomombi Falls Lookout ......p7 Hard Yakka ......p8 Torrington & Gibraltar after fires ......p9 Small Eucalypts ......p12 Drought tolerance of plants ......p15 Armidale & District Group PO Box 735, Armidale NSW 2350 President: Vacant Vice President: Colin Wilson Secretary: Penelope Sinclair Ph. 6771 5639 [email protected] Treasurer: Phil Rose Ph. 6775 3767 [email protected] Membership: Phil Rose [email protected] 2 Markets in the Mall, Outings, OHS & Environmental Officer and Arboretum Coordinator: Patrick Laher Ph: 0427327719 [email protected] Newsletter Editor: John Nevin Ph: 6775218 [email protected],net.au Meet and Greet: Lee Horsley Ph: 0421381157 [email protected] Afternoon tea: Deidre Waters Ph: 67753754 [email protected] Web Master: Eric Sinclair Our website: http://www.austplants.com.au From the Editor: We have certainly had a memorable year - the worst drought in living memory followed by the most extensive bushfires seen in Australia, and to top it off, the biggest pandemic the world has seen in 100 years. The pandemic has made essential self distancing and quarantining to arrest the spread of the Corona virus. As a result, most APS activities have been shelved for the time being. Being in isolation at home has been a mixed blessing.
    [Show full text]
  • Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Distribution, Ecology and Conservation of the Endangered Shrub, Acacia Meiantha (Fabaceae) in Central West New South Wales
    Cunninghamia Date of Publication: September 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Distribution, ecology and conservation of the endangered shrub, Acacia meiantha (Fabaceae) in Central West New South Wales Richard W. Medd 593 Cargo Road, Orange NSW 2800, AUSTRALIA. [email protected] Abstract: Acacia meiantha Tindale & Herscovitch, (Fabaceae) a low to medium shrub with root suckering, is only known to occur at three locations, Clarence, Carcalgong and Mullion Creek in Central West New South Wales. These disjunct populations each separated by >60 km, are considered as isolated subpopulations. A compilation of recent field surveys shows that of the 42,000 stem clusters/aggregates of Acacia meiantha estimated across the three geographic locations, the majority, 39,900 (96%) occur in the Mullions Range State Forest subpopulation, where 61% of clusters occur in the remnant native forest areas and 39% in the plantation forestry compartments. At Carcalgong 1,566 stem clusters were recorded along narrow roadside reserves. The Clarence subpopulation consists of < 400 stem clusters precariously situated among a confluence of road, railway and electricity power-line easements. Ecological observations of habitat are presented; information relating to genetic diversity, seed biology, reproductive biology and response to fire is found to be Data Deficient. The threatened species listing as Endangered under both State and Commonwealth legislation is warranted; the species does not occur on any conservation lands, has restricted distribution and abundance, and is vulnerable to ongoing threats. The area (AOO) and extent of occupancy (EOO) are calculated. It occurs at three locations (< 5), has an estimated EOO of 2,900 km2 (< 5,000 km2) and an AOO of 80 km2 (< 500 km2) (IUCN (2019) thresholds in brackets); there are significant threats to the extent and quality of habitats.
    [Show full text]
  • Seed Fill, Viability and Germination of NSW Species in the Family Rutaceae
    Seed fill, viability and germination of NSW species in the family Rutaceae Amelia J. Martyn , Leahwyn U. Seed , Mark K. J. Ooi 1 and Catherine A. Offord Botanic Gardens Trust, Mount Annan Botanic Garden, Mount Annan Drive, Mount Annan, NSW 2567, AUSTRALIA 1 Scientific Services Division, Department of Environment, Climate Change and Water NSW, PO Box 1967, Hurstville NSW 2220, AUSTRALIA Abstract: The New South Wales Seedbank (at Mount Annan Botanic Garden) stores seeds of both common and threatened species for conservation, research and restoration or revegetation projects. The value of the collections depends on our ability to germinate seeds once they have been retrieved from storage. The collection includes 129 collections representing 93 taxa in the family Rutaceae, but seed viability in Rutaceae is variable, germination cues are poorly-understood and problems are likely to arise in trying to grow plants from seed. In this study we quantified seed fill and/or viability and germination for 112 species in the Rutaceae family. For many of the species, this is the first time that these seed characteristics have been recorded. We found that seed fill (0–100%) and seed viability (0–97%), were highly variable, with 80% of collections having low viability (<75%). There was also a trend for threatened species to have lower seed fill than common species, while viability and germination were similar. This review reaffirms the need for further study of seed characteristics in Rutaceae. Cunninghamia (2009) 11(2): 203–212 Introduction variability to be retained. Seed research in Rutaceae has been hampered by low seed numbers and poor viability, making Plant species in the family Rutaceae make up a significant it difficult to collect sufficient seeds to study germination component of the understorey in many temperate Australian and dormancy.
    [Show full text]
  • Australian Plants Suitable for Tamworth Regional Council Areas
    Australian Plants Suitable for Tamworth Regional Council Areas Eucalyptus blakelyi Photo Tony Croft Tamworth Group of Australian Plants Society As at July 2007 Eucalyptus blakelyi II TAMWORTH REGIONAL COUNCIL RAINFALL DATA Most of the Tamworth Regional Council area receives an average annual rainfall of 600 to 800mm except for the north- west corner on the Mount Kaputar plateau and the tablelands country from Bendemeer through Woolbrook to Hanging Rock above Nundle which often receives between 800 to 1000mm. Similarly temperatures vary across the region with average annual minimums on the tablelands and nearby areas between 6 and 9 degrees Celsius. A series of frosts are received across the entire region each winter. Average annual maximums are between 18 and 21 degrees on the tablelands, 21 to 24 degrees across most of the region and 24 to 27 degrees in the west of the region. 1. Barraba 2. Manilla 250 180 160 200 140 120 150 2004/2005 100 2004-2005 80 100 Average Average 60 50 40 20 0 0 il il ec Jan eb ay ec Jan eb ay July Aug Sept Oct Nov D F Apr M June July Aug Sept Oct Nov D F Apr M June March March 3. Nundle 4.Tamworth 250 200 250 200 m 150 2004-2005 2003-2004 150 2003-2004 Average 100 100 2004-2005 m in Rainfall 50 50 0 y t l e 0 ct an h J rc Jul gust Sep O Nov Dec Feb Apri May Jun n b y Ma uly Oct e rch pril une Au J Aug Sept Nov Dec Ja F a A Ma J M Recent and Average Rainfall for Barraba, Manilla, Nundle, Tamworth and Woolbrook Location Rainfall Rainfall Average 2004-2005 2003-2004 Rainfall in mm in mm in mm Barraba 780.9 689 Manilla 627.9 498.1 651.4 Not Nundle 793.7 868 Available Tamworth 629.6 759.2 673 Woolbrook 686.8 784.5 783 More detailed weather information can be found on the Bureau of Meteorology website.
    [Show full text]
  • The Effects of Fire-Related Germination Cues, Time-Since-Fire and Habitats on the Germinable Soil-Borne Seed Banks at the Torrington State Conservation Area (NSW)
    The effects of fire-related germination cues, time-since-fire and habitats on the germinable soil-borne seed banks at the Torrington State Conservation Area (NSW). Kinzang Dorji November 2004 A thesis submitted for the degree of Master of Scientific Studies at the University of New England, Armidale, Australia. ABSTRACT To determine the effects of fire-related germination cues, time-since-fire and habitats, soil-borne seed bank samples of rocky outcrops and forest habitats of Torrington State Conservation Area were examined under glasshouse conditions. A total of 1766 seedlings were recorded from the 128 sample trays over the trial duration of 9 weeks. After 9 weeks, no more seedlings emerged. The seedlings were identified as belonging to 44 species from 38 genera and 23 plant families; comprising 21 woody species, 17 forb species, 3 graminoid species and 3 grass species. The most prominent plant families were Fabaceae (8 woody species) followed by Myrtaceae (4 woody species), Apiaceae (4 forb species) and Epacridaceae, Poaceae and Asteraceae with 3 species each. Both seedling emergence and species richness was greater for heat and combinatorial effect of heat and smoke induced treatments than for control and smoke treatments. However, only the species richness was significant for treatments. Time-since-fire significantly affected the community composition. There were a total of 1351 seedlings germinated from the sites with long time-since-fire (>10 yrs.) and 415 seedlings were emerged from the sites with short time-since-fire (18 months). Germinants were mostly shown from the long-burnt rocky outcrops. There was a habitats effect with rocky outcrop samples having significantly more germinable seeds (1522 seedlings) than soil samples collected from forest habitats (144 seedlings).
    [Show full text]
  • Generic Delimitation and Macroevolutionary Studies in Danthonioideae (Poaceae), with Emphasis on the Wallaby Grasses, Rytidosperma Steud
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Generic delimitation and macroevolutionary studies in Danthonioideae (Poaceae), with emphasis on the wallaby grasses, Rytidosperma Steud. s.l. Humphreys, Aelys M Abstract: Ein Hauptziel von evolutionsbiologischer und ökologischer Forschung ist die biologische Vielfalt zu verstehen. Die systematische Biologie ist immer in der vordersten Reihe dieser Forschung gewesen and spielt eine wichtiger Rolle in der Dokumentation und Klassifikation von beobachteten Diversitätsmustern und in der Analyse von derer Herkunft. In den letzten Jahren ist die molekulare Phylogenetik ein wichtiger Teil dieser Studien geworden. Dies brachte nicht nur neue Methoden für phylogenetische Rekonstruktio- nen, die ein besseres Verständnis über Verwandtschaften und Klassifikationen brachten, sondern gaben auch einen neuen Rahmen für vergleichende Studien der Makroevolution vor. Diese Doktorarbeit liegt im Zentrum solcher Studien und ist ein Beitrag an unser wachsendes Verständnis der Vielfalt in der Natur und insbesondere von Gräsern (Poaceae). Gräser sind schwierig zu klassifizieren. Dies liegt ein- erseits an ihrer reduzierten Morphologie – die an Windbestäubung angepasst ist – und anderseits an Prozessen wie Hybridisation, die häufig in Gräsern vorkommen, und die die Bestimmung von evolution- shistorischen Mustern erschweren. Gräser kommen mit über 11,000 Arten auf allen Kontinenten (ausser der Antarktis) vor und umfassen einige der
    [Show full text]
  • Frankston Vegetation Study 2006
    Frankston Vegetation Study 2006 Project 05-5 Planning Review Prepared for: Frankston City Council Ecology Australia Pty Ltd Flora and Fauna Consultants 88B Station Street, Fairfield, Victoria, Australia 3078 Tel: (03) 9489 4191 Fax: (03) 9481 7679 www.ecologyaustralia.com.au [email protected] Copyright 2006 Ecology Australia Pty Ltd This publication is copyright. It may only be used in accordance with the agreed terms of the commission. Except as provided for by the Copyright Act 1968, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without prior written permission of Ecology Australia Pty Ltd. Document information This is a controlled document. Details of the document ownership, location, distribution, status and revision history and are listed below. All comments or requests for changes to content should be addressed to the document owner. Owner Ecology Australia Pty Ltd Author Sarah Bedggood, Lisa Crowfoot, Nina Roberts, Cherie Campbell, Jamie McMahon and Ann McGregor Location Frankston Vegetation Study 2006.doc Document History Status Changes By Date Draft Draft 0.1 Sarah Bedggood 07/04/06 Final Draft Draft 0.2 Sarah Bedggood 12/05/2006 Final final Sarah Bedggood 02/08/2006 Final Frankston Vegetation Study 2006 with maps & App 4.doc i Frankston Vegetation Study 2006 Contents Summary 1 1 Introduction 2 2 Study Area 3 3 Methods 4 3.1 Literature review 4 3.2 GIS 4 3.3 Taxonomy 5 3.4 Field surveys 5 4 Vegetation 7 4.1 Ecological Vegetation Classes 7 4.2 EVC Descriptions 11 4.3 Significance of vegetation 34 5 Management Issues 36 6 Review of legislation and planning controls relating to native vegetation 39 6.1 Legislation and policies for native vegetation protection 39 6.2 Native vegetation protection in the Frankston Planning Scheme 48 7 Recommendations 51 8 Acknowlegements 53 9 References 54 Tables Table 1.
    [Show full text]
  • Pictorial Guide to the Common Legumes of the Blue Mountains, Australia
    Pictorial guide to the common legumes of the Blue Mountains, Australia. About this guide The photographs in this guide show vouchers that were taken from sampling sites in the Blue Mountains around the Bilpin-Katoomba area. These vouchers were identified at the NSW Herbarium. The genera are sorted alphabetically, but the species within each genus are shown in order of decreasing commonality in the field. Each voucher is photographed on a 1 cm grid. Descriptions and line drawings are from PlantNET < plantnet.rbgsyd.nsw.gov.au >. The glossary of botany terms is also taken from PlantNET. Acacia spp. Acacia ulicifolia Extremely pungent and stiff leaves. Description Decumbent to erect shrub 0.5–2 m high; bark smooth, grey; branchlets ± terete, at first sparsely to densely hairy. Stipules subulate, 1–2 mm long. Phyllodes ± rigid, ± straight, terete or 4-angled, 0.8–1.5 cm long, 1–2 mm wide, glabrous, midvein prominent and slightly towards the upper margin, apex pungent-pointed; 1 obscure gland along margin; pulvinus obscure. Inflorescences simple, 1 in axil of phyllodes; peduncles 5–15 mm long, usually glabrous; heads globose, 15–35-flowered, 4–10 mm diam., pale yellow to ± white. Pods ± curved, ± flat, usually slightly constricted between seeds, 2–6 cm long, 3–5 mm wide, thinly leathery, often brittle with age, smooth to obscurely wrinkled, glabrous; seeds longitudinal; funicle filiform, short. Acacia suaveolens Distinctive ribbed pods and leaves with a prominent midvein and mucro at apex. Description Prostrate to erect shrub 0.3–2.5 m high; bark smooth, purplish brown or light green; branchlets angled or flattened, glabrous.
    [Show full text]
  • Dubbo Region Flora List 2012
    Flora List of the Dubbo Area and Central Western Slopes Harlequin Mistletoe Lysiana exocarpi subsp. tenuis Drilliwarrina State Conservation Area Janice Hosking for the Dubbo Field Naturalist and Conservation Society Inc Version: June 2012 www.dubbofieldnats.org.au Flora List of the Dubbo Area and Central Western Slopes Janice Hosking for Dubbo Field Nats This list of approximately 1,300 plant species was prepared by Janice Hosking for the Dubbo Field Naturalist & Conservation Society Inc. Many thanks to Steve Lewer and Chris McRae who spent many hours checking and adding to this list. Cover photo: Anne McAlpine, A map of the area subject to this list is provided below. Data Sources: This list has been compiled from the following information: A Flora of the Dubbo District 25 Miles radius around the city (c. 1950s) compiled by George Althofer, assisted by Andy Graham. Gilgandra Native Flora Reserve Plant List Goonoo State Forest Forestry Commission list, supplemented by Mr. P. Althofer. List No.1 (c 1950s) Goonoo State Forest Dubbo Management Area list of Plants List No.2 The Flora of Mt. Arthur Reserve, Wellington NSW A small list for Goonoo State Forest. Author and date unknown Flora List from Cashells Dam Area, Goonoo State Forest (now CCA) – compiled by Steve Lewer (NSW OEH) Oasis Reserve Plant List (Southwest of Dubbo) – compiled by Robert Gibson (NSW OEH) NSW DECCW Wildlife atlas List 2010,Y.E.T.I. List 2010 PlantNet (NSW Botanic Gardens Records) Various species lists for Dubbo District rural properties – compiled by Steve Lewer (NSW OEH) * Denotes an exotic species ** Now considered to be either locally extinct or possibly a misidentification.
    [Show full text]
  • Vegetation of Montane Bogs in East-Flowing Catchments of Northern New England, New South Wales
    Vegetation of montane bogs in east-flowing catchments of northern New England, New South Wales John T. Hunter1 and Dorothy Bell2 1School of Human and Environmental Studies, University of New England, Armidale, NSW 2351, email: [email protected] 2School of Environmental Studies and Natural Resources Management, University of New England, Armidale, NSW 2351, AUSTRALIA Abstract: The floristics of the montane bogs in east-flowing catchments of northern New England, north-eastern New South Wales (lat 28° 47’–31° 25’ S; long 151° 50’–152° 30’ E), are described from 62 full floristic survey sites (20 x 20 m in area). Eight vegetation communities are based on flexible UPGMA analysis of cover-abundance scores of vascular plant taxa. Shrub species make up 26% of the flora and herb species 69%, with the remaining taxa trees, climbers or vines. Shrub species were of little diagnostic value, as a few common dominants were shared across most communities. The herbaceous layer was found to be of better circumscriptive value. Communities described (based on dominant herbaceous species) are: (1) Themeda australis – Gonocarpus micranthus, (2) Baumea articulata – Baloskion stenocoleum, (3) Lepidosperma limicola – Baloskion stenocoleum, (4) Baloskion fimbriatum – Lomandra longifolia, (5) Lepyrodia scariosa – Blandfordia grandiflora, (6) Lepidosperma gunnii – Lepidosperma scariosa, (7) Baloskion stenocoleum – Empodisma minus, (8) Lepidosperma limicola – Xyris operculata. The mean annual moisture index was found to account for 26% of the variation in species density. These montane bog systems are some of the richest in Australia, with a high number of rare and restricted taxa. They are vulnerable to both present landuse practices and future changes in climate, are restricted in area, and need further conservation efforts to ensure their long-term survival.
    [Show full text]