Malicious Codes in Depth Taxonomy of Malicious Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress
Order Code RL32114 Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Updated January 29, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Summary Cybercrime is becoming more organized and established as a transnational business. High technology online skills are now available for rent to a variety of customers, possibly including nation states, or individuals and groups that could secretly represent terrorist groups. The increased use of automated attack tools by cybercriminals has overwhelmed some current methodologies used for tracking Internet cyberattacks, and vulnerabilities of the U.S. critical infrastructure, which are acknowledged openly in publications, could possibly attract cyberattacks to extort money, or damage the U.S. economy to affect national security. In April and May 2007, NATO and the United States sent computer security experts to Estonia to help that nation recover from cyberattacks directed against government computer systems, and to analyze the methods used and determine the source of the attacks.1 Some security experts suspect that political protestors may have rented the services of cybercriminals, possibly a large network of infected PCs, called a “botnet,” to help disrupt the computer systems of the Estonian government. DOD officials have also indicated that similar cyberattacks from individuals and countries targeting economic, -
The Downadup Codex a Comprehensive Guide to the Threat’S Mechanics
Security Response The Downadup Codex A comprehensive guide to the threat’s mechanics. Edition 2.0 Introduction Contents Introduction.............................................................1 Since its appearance in late-2008, the Downadup worm has become Editor’s Note............................................................5 one of the most wide-spread threats to hit the Internet for a number of Increase in exploit attempts against MS08-067.....6 years. A complex piece of malicious code, this threat was able to jump W32.Downadup infection statistics.........................8 certain network hurdles, hide in the shadows of network traffic, and New variants of W32.Downadup.B find new ways to propagate.........................................10 defend itself against attack with a deftness not often seen in today’s W32.Downadup and W32.Downadup.B threat landscape. Yet it contained few previously unseen features. What statistics................................................................12 set it apart was the sheer number of tricks it held up its sleeve. Peer-to-peer payload distribution...........................15 Geo-location, fingerprinting, and piracy...............17 It all started in late-October of 2008, we began to receive reports of A lock with no key..................................................19 Small improvements yield big returns..................21 targeted attacks taking advantage of an as-yet unknown vulnerability Attempts at smart network scanning...................23 in Window’s remote procedure call (RPC) service. Microsoft quickly Playing with Universal Plug and Play...................24 released an out-of-band security patch (MS08-067), going so far as to Locking itself out.................................................27 classify the update as “critical” for some operating systems—the high- A new Downadup variant?......................................29 Advanced crypto protection.................................30 est designation for a Microsoft Security Bulletin. -
Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G
Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G. van Eeten, Delft University of Technology https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/asghari This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere and Michel J.G. van Eeten Delft University of Technology Abstract more sophisticated C&C mechanisms that are increas- ingly resilient against takeover attempts [30]. Research on botnet mitigation has focused predomi- In pale contrast to this wealth of work stands the lim- nantly on methods to technically disrupt the command- ited research into the other side of botnet mitigation: and-control infrastructure. Much less is known about the cleanup of the infected machines of end users. Af- effectiveness of large-scale efforts to clean up infected ter a botnet is successfully sinkholed, the bots or zom- machines. We analyze longitudinal data from the sink- bies basically remain waiting for the attackers to find hole of Conficker, one the largest botnets ever seen, to as- a way to reconnect to them, update their binaries and sess the impact of what has been emerging as a best prac- move the machines out of the sinkhole. This happens tice: national anti-botnet initiatives that support large- with some regularity. The recent sinkholing attempt of scale cleanup of end user machines. -
Undergraduate Report
UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually -
Synthesizing Near-Optimal Malware Specifications from Suspicious
Synthesizing Near-Optimal Malware Specifications from Suspicious Behaviors Somesh Jha∗, Matthew Fredrikson∗, Mihai Christodoresu†, Reiner Sailer‡, Xifeng Yan§ ∗University of Wisconsin–Madison, †Qualcomm Research Silicon Valley, ‡IBM T.J Watson Research Center, §University of California–Santa Barbara Abstract—Behavior-based detection techniques are a promis- and errors. ing solution to the problem of malware proliferation. However, We make the observation that behavioral specifications they require precise specifications of malicious behavior that do not result in an excessive number of false alarms, while still are best viewed as a form of discriminative specification.A remaining general enough to detect new variants before tradi- discriminative specification describes the unique properties tional signatures can be created and distributed. In this paper, of a given class, in contrast to the properties exhibited by we present an automatic technique for extracting optimally discriminative specifications a second mutually-exclusive class. This paper presents an , which uniquely identify a class automated technique that combines program analysis, graph of programs. Such a discriminative specification can be used by a behavior-based malware detector. Our technique, based mining, and stochastic optimization to synthesize malware on graph mining and stochastic optimization, scales to large behavior specifications. We represent program behaviors as classes of programs. When this work was originally published, graphs that are mined for discriminative patterns. As there the technique yielded favorable results on malware targeted are many ways in which malware can accomplish the same towards workstations (~86% detection rates on new malware). goal, we use these patterns as building blocks for construct- We believe that it can be brought to bear on emerging malware- based threats for new platforms, and discuss several promising ing discriminative specifications that are general across vari- avenues for future work in this direction. -
Cyber Warfare a “Nuclear Option”?
CYBER WARFARE A “NUCLEAR OPTION”? ANDREW F. KREPINEVICH CYBER WARFARE: A “NUCLEAR OPTION”? BY ANDREW KREPINEVICH 2012 © 2012 Center for Strategic and Budgetary Assessments. All rights reserved. About the Center for Strategic and Budgetary Assessments The Center for Strategic and Budgetary Assessments (CSBA) is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s goal is to enable policymakers to make informed decisions on matters of strategy, secu- rity policy and resource allocation. CSBA provides timely, impartial, and insight- ful analyses to senior decision makers in the executive and legislative branches, as well as to the media and the broader national security community. CSBA encour- ages thoughtful participation in the development of national security strategy and policy, and in the allocation of scarce human and capital resources. CSBA’s analysis and outreach focus on key questions related to existing and emerging threats to US national security. Meeting these challenges will require transforming the national security establishment, and we are devoted to helping achieve this end. About the Author Dr. Andrew F. Krepinevich, Jr. is the President of the Center for Strategic and Budgetary Assessments, which he joined following a 21-year career in the U.S. Army. He has served in the Department of Defense’s Office of Net Assessment, on the personal staff of three secretaries of defense, the National Defense Panel, the Defense Science Board Task Force on Joint Experimentation, and the Defense Policy Board. He is the author of 7 Deadly Scenarios: A Military Futurist Explores War in the 21st Century and The Army and Vietnam. -
The Botnet Chronicles a Journey to Infamy
The Botnet Chronicles A Journey to Infamy Trend Micro, Incorporated Rik Ferguson Senior Security Advisor A Trend Micro White Paper I November 2010 The Botnet Chronicles A Journey to Infamy CONTENTS A Prelude to Evolution ....................................................................................................................4 The Botnet Saga Begins .................................................................................................................5 The Birth of Organized Crime .........................................................................................................7 The Security War Rages On ........................................................................................................... 8 Lost in the White Noise................................................................................................................. 10 Where Do We Go from Here? .......................................................................................................... 11 References ...................................................................................................................................... 12 2 WHITE PAPER I THE BOTNET CHRONICLES: A JOURNEY TO INFAMY The Botnet Chronicles A Journey to Infamy The botnet time line below shows a rundown of the botnets discussed in this white paper. Clicking each botnet’s name in blue will bring you to the page where it is described in more detail. To go back to the time line below from each page, click the ~ at the end of the section. 3 WHITE -
GQ: Practical Containment for Measuring Modern Malware Systems
GQ: Practical Containment for Measuring Modern Malware Systems Christian Kreibich Nicholas Weaver Chris Kanich ICSI & UC Berkeley ICSI & UC Berkeley UC San Diego [email protected] [email protected] [email protected] Weidong Cui Vern Paxson Microsoft Research ICSI & UC Berkeley [email protected] [email protected] Abstract their behavior, sometimes only for seconds at a time (e.g., to un- Measurement and analysis of modern malware systems such as bot- derstand the bootstrapping behavior of a binary, perhaps in tandem nets relies crucially on execution of specimens in a setting that en- with static analysis), but potentially also for weeks on end (e.g., to ables them to communicate with other systems across the Internet. conduct long-term botnet measurement via “infiltration” [13]). Ethical, legal, and technical constraints however demand contain- This need to execute malware samples in a laboratory setting ex- ment of resulting network activity in order to prevent the malware poses a dilemma. On the one hand, unconstrained execution of the from harming others while still ensuring that it exhibits its inher- malware under study will likely enable it to operate fully as in- ent behavior. Current best practices in this space are sorely lack- tended, including embarking on a large array of possible malicious ing: measurement researchers often treat containment superficially, activities, such as pumping out spam, contributing to denial-of- sometimes ignoring it altogether. In this paper we present GQ, service floods, conducting click fraud, or obscuring other attacks a malware execution “farm” that uses explicit containment prim- by proxying malicious traffic. -
Lexisnexis® Congressional Copyright 2003 Fdchemedia, Inc. All Rights
LexisNexis® Congressional Copyright 2003 FDCHeMedia, Inc. All Rights Reserved. Federal Document Clearing House Congressional Testimony September 10, 2003 Wednesday SECTION: CAPITOL HILL HEARING TESTIMONY LENGTH: 4090 words COMMITTEE: HOUSE GOVERNMENT REFORM SUBCOMMITTEE: TECHNOLOGY, INFORMATION POLICY, INTERGOVERNMENTAL RELATIONS, AND CENSUS HEADLINE: COMPUTER VIRUS PROTECTION TESTIMONY-BY: RICHARD PETHIA, DIRECTOR AFFILIATION: CERT COORDINATION CENTER BODY: Statement of Richard Pethia Director, CERT Coordination Center Subcommittee on Technology, Information Policy, Intergovernmental Relations, and the Census Committee on House Government Reform September 10, 2003 Introduction Mr. Chairman and Members of the Subcommittee: My name is Rich Pethia. I am the director of the CERTO Coordination Center (CERT/CC). Thank you for the opportunity to testify on the important issue of cyber security. Today I will discuss viruses and worms and the steps we must take to protect our systems from them. The CERT/CC was formed in 1988 as a direct result of the first Internet worm. It was the first computer security incident to make headline news, serving as a wake-up call for network security. In response, the CERT/CC was established by the Defense Advanced Research Projects Agency at Carnegie Mellon University's Software Engineering Institute, in Pittsburgh. Our mission is to serve as a focal point to help resolve computer security incidents and vulnerabilities, to help others establish incident response capabilities, and to raise awareness of computer security issues and help people understand the steps they need to take to better protect their systems. We activated the center in just two weeks, and we have worked hard to maintain our ability to react quickly. -
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone Thomas Dübendorfer, Arno Wagner, Theus Hossmann, Bernhard Plattner ETH Zurich, Switzerland [email protected] DIMVA 2005, Wien, Austria Agenda 1) Introduction 2) Flow-Level Backbone Traffic 3) Network Worm Blaster.A 4) E-Mail Worm Sobig.F 5) Conclusions and Outlook © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -2- 1) Introduction Authors Prof. Dr. Bernhard Plattner Professor, ETH Zurich (since 1988) Head of the Communication Systems Group at the Computer Engineering and Networks Laboratory TIK Prorector of education at ETH Zurich (since 2005) Thomas Dübendorfer Dipl. Informatik-Ing., ETH Zurich, Switzerland (2001) ISC2 CISSP (Certified Information System Security Professional) (2003) PhD student at TIK, ETH Zurich (since 2001) Network security research in the context of the DDoSVax project at ETH Further authors: Arno Wagner, Theus Hossmann © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -3- 1) Introduction Worm Analysis Why analyse Internet worms? • basis for research and development of: • worm detection methods • effective countermeasures • understand network impact of worms Wasn‘t this already done by anti-virus software vendors? • Anti-virus software works with host-centric signatures Research method used 1. Execute worm code in an Internet-like testbed and observe infections 2. Measure packet-level traffic and determine network-centric worm signatures on flow-level 3. Extensive analysis of flow-level traffic of the actual worm outbreaks captured in a Swiss backbone © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -4- 1) Introduction Related Work Internet backbone worm analyses: • Many theoretical worm spreading models and simulations exist (e.g. -
Bibliography
Bibliography [1] M Aamir Ali, B Arief, M Emms, A van Moorsel, “Does the Online Card Payment Landscape Unwittingly Facilitate Fraud?” IEEE Security & Pri- vacy Magazine (2017) [2] M Abadi, RM Needham, “Prudent Engineering Practice for Cryptographic Protocols”, IEEE Transactions on Software Engineering v 22 no 1 (Jan 96) pp 6–15; also as DEC SRC Research Report no 125 (June 1 1994) [3] A Abbasi, HC Chen, “Visualizing Authorship for Identification”, in ISI 2006, LNCS 3975 pp 60–71 [4] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, PG Neumann, RL Rivest, JI Schiller, B Schneier, “The Risks of Key Recovery, Key Escrow, and Trusted Third-Party Encryption”, in World Wide Web Journal v 2 no 3 (Summer 1997) pp 241–257 [5] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, M Green, PG Neumann, RL Rivest, JI Schiller, B Schneier, M Specter, D Weizmann, “Keys Under Doormats: Mandating insecurity by requiring government access to all data and communications”, MIT CSAIL Tech Report 2015-026 (July 6, 2015); abridged version in Communications of the ACM v 58 no 10 (Oct 2015) [6] M Abrahms, “What Terrorists Really Want”,International Security v 32 no 4 (2008) pp 78–105 [7] M Abrahms, J Weiss, “Malicious Control System Cyber Security Attack Case Study – Maroochy Water Services, Australia”, ACSAC 2008 [8] A Abulafia, S Brown, S Abramovich-Bar, “A Fraudulent Case Involving Novel Ink Eradication Methods”, in Journal of Forensic Sciences v41(1996) pp 300-302 [9] DG Abraham, GM Dolan, GP Double, JV Stevens, -
Address Munging: the Practice of Disguising, Or Munging, an E-Mail Address to Prevent It Being Automatically Collected and Used
Address Munging: the practice of disguising, or munging, an e-mail address to prevent it being automatically collected and used as a target for people and organizations that send unsolicited bulk e-mail address. Adware: or advertising-supported software is any software package which automatically plays, displays, or downloads advertising material to a computer after the software is installed on it or while the application is being used. Some types of adware are also spyware and can be classified as privacy-invasive software. Adware is software designed to force pre-chosen ads to display on your system. Some adware is designed to be malicious and will pop up ads with such speed and frequency that they seem to be taking over everything, slowing down your system and tying up all of your system resources. When adware is coupled with spyware, it can be a frustrating ride, to say the least. Backdoor: in a computer system (or cryptosystem or algorithm) is a method of bypassing normal authentication, securing remote access to a computer, obtaining access to plaintext, and so on, while attempting to remain undetected. The backdoor may take the form of an installed program (e.g., Back Orifice), or could be a modification to an existing program or hardware device. A back door is a point of entry that circumvents normal security and can be used by a cracker to access a network or computer system. Usually back doors are created by system developers as shortcuts to speed access through security during the development stage and then are overlooked and never properly removed during final implementation.