The Blaster Worm: Then and Now

Total Page:16

File Type:pdf, Size:1020Kb

The Blaster Worm: Then and Now Worms The Blaster Worm: Then and Now The Blaster worm of 2003 infected at least 100,000 Microsoft Windows systems and cost millions in damage. In spite of cleanup efforts, an antiworm, and a removal tool from Microsoft, the worm persists. Observing the worm’s activity can provide insight into the evolution of Internet worms. MICHAEL n Wednesday, 16 July 2003, Microsoft and continued to BAILEY, EVAN Security Bulletin MS03-026 (www. infect new hosts COOKE, microsoft.com/security/incident/blast.mspx) more than a year later. By using a wide area network- FARNAM O announced a buffer overrun in the Windows monitoring technique that observes worm infection at- JAHANIAN, AND Remote Procedure Call (RPC) interface that could let tempts, we collected observations of the Blaster worm DAVID WATSON attackers execute arbitrary code. The flaw, which the during its onset in August 2003 and again in August 2004. University of Last Stage of Delirium (LSD) security group initially This let us study worm evolution and provides an excel- Michigan uncovered (http://lsd-pl.net/special.html), affected lent illustration of a worm’s four-phase life cycle, lending many Windows operating system versions, including insight into its latency, growth, decay, and persistence. JOSE NAZARIO NT 4.0, 2000, and XP. Arbor When the vulnerability was disclosed, no known How the Blaster worm attacks Networks public exploit existed, and Microsoft made a patch avail- The initial Blaster variant’s decompiled source code re- able through their Web site. The CERT Coordination veals its unique behavior (http://robertgraham.com/ Center and other security organizations issued advisories journal/030815-blaster.c). The Blaster worm can be over the next several days.1 Almost immediately, discus- launched in one of two ways: as the result of a successful sions of the vulnerability began appearing on security new infection or when a user reboots an already in- lists. By 26 July, HD Moore had published a working ex- fected machine. Once launched, the worm immedi- ploit, dcom.c, on the Full Disclosure mailing list ately starts the setup for further propagation by (http://lists.netsys.com/pipermail/full-disclosure/2003 choosing an address from the same local /16 (class B) -July/007092.html). address as the infected host. Next, it picks a random Scattered reports of attackers reusing the exploit number to determine whether to use the local /16 ad- emerged during the next several weeks; then, on Monday, dress it just generated or a completely random one. The 11 August, the first Blaster worm variant struck. Also bias is 60 percent toward a random address. Next, the known as MSBlast or Lovsan, the worm copied code di- worm randomly chooses the offset to determine rectly from the dcom.c exploit, added its own code, and whether to infect Windows 2000 or XP, with an 80 launched a coordinated denial-of-service (DoS) attack to percent bias toward XP. exhaust Windowsupdate.com’s resources using a Transmis- On certain system dates, the initial variant, sion Control Protocol (TCP) port 80 SYN flood. It also Blaster.A, then starts a thread to launch a DoS attack used the backdoor mechanism from the example exploit to against Windowsupdate.com. It makes no further calls transfer the worm payload to newly infected systems. to the random number generator, but repeatedly seeds Within its first week, the Blaster worm infected the random number with the number of milliseconds more than 100,000 Microsoft Windows systems. In since boot time. This indicates that the worm author spite of eradication efforts, the Blaster worm was alive significantly lacks understanding of random number 26 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY Worms 80k subnets Blaster.A still infected 11 Aug. 2003 Aug. 2004 Blaster.B 13 Aug. 2003 Blaster.B MS03-026 writer Removal 16 July 2003 HD Moore Welchia exploit 18 Aug. 2003 arrested tool Blaster.B 26 July 2003 31 Dec. 2003 writer sentenced July 2003 August 2003 September 2003 2004 2005 Figure 1. A Blaster worm time line. Although a rapid succession of activity occurs around the worm’s initial release, its impact continues to be felt more than a year later. generators. (Others have discussed the impact of these worms not as acts of Internet vandalism but as serious poorly seeded random generators.2) The propagation crimes. Although the original Blaster.A author was setup is complete when the worm uses the previously never caught, authors of several other variants have generated starting address and exploit offset to attempt been apprehended.5,6 to infect 20 sequential addresses using 20 threads on TCP port 135. It repeats the target infection attempt on Worm measurement infrastructure the next 20 sequential addresses, indefinitely scanning We measured of the Blaster worm by using a globally an- IPv4 space in sequential order. If a connection attempt nounced but unused /8 (class A) network, which repre- to TCP port 135 is successful, the worm sends an RPC sents roughly 1/256 of the Internet, or approximately 16 bind command and an RPC request command contain- million addresses. This monitor is itself part of the Inter- ing the buffer overflow and exploit code. The exploit net Motion Sensor (IMS; http://ims.eecs.umich.edu), a opens a backdoor on TCP port 4444, which waits for network of distributed blackhole sensors that monitor further commands. The infecting system then issues a blocks of unused address space. Because no legitimate command to the newly infected system to transfer the hosts exist in an unused address block, any observed traf- worm binary using Trivial File Transfer Protocol fic destined for such addresses must be the result of mis- (TFTP) on UDP port 69 from the infecting system and configuration, backscatter from spoofed source execute it. addresses, or scanning from worms and other network Numerous Blaster variants—as well as several new probing. Prefiltering traffic in this way eliminates many families of worms that exploit the same initial RPC false positives when identifying malicious traffic and vulnerability—have appeared since its release, many of helps us avoid the scaling issues of other monitoring ap- them emerging within a few weeks of Blaster. Perhaps proaches (for a discussion of such approaches, see the the two most notable are the Welchia (http://security sidebar on p. 30). This technique goes by several names, response.symantec.com/avcenter/venc/data/w32.wel including network telescopes,7 blackholes,8,9 and dark- chia.worm.html) and SDBot (http://securityresponse. nets (www.cymru.com/Darknet/index.html). symantec.com/avcenter/venc/data/w32.randex.e.html) worms. Welchia, or Nachi as it’s sometimes called, was an The Blaster life cycle antiworm3 that attempted to patch the vulnerability and in August 2003 ended up causing significant damage of its own. SDBot One of the Blaster worm’s more interesting elements is was notable in that it used the same RPC vulnerability to that it provides an excellent example of a worm’s life install the SDBot kit, which creates a backdoor on the cycle. Although not all worms follow this cycle in its en- system that enables remote control of the infected system tirety, it’s still informative for understanding broad be- through Internet Relay Chat (IRC). haviors. As mentioned earlier, a four-phased worm life The Blaster worm’s impact wasn’t limited to a short cycle consists of latency, growth, decay, and persistence (see period in August 2003. A published survey of 19 re- Figure 2). search universities showed that each spent an average of Latency describes the time period between discov- US$299,579 during a five-week period to recover from ering a vulnerability and observing the appearance of a the Blaster worm and its variants.4 The cost of this worm in the wild. This period might include vulnerabil- cleanup effort has helped solidify a growing view of ity publication, patch release, and theoretical or working www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 27 Worms ning for TCP port 135 against 256 contiguous addresses 15,000 began to diminish. Fitting this loss of worm activity to a Latency simple exponential decay, we calculated a half-life of Growth roughly 12 hours. This loss of activity continued for ap- Decay Persistence proximately four days. 10,000 Finally, most nondestructive worms enter a persis- tent phase in which a relatively small population of hosts remain infected. Following the decay phase, the observed Blaster activity reached a fairly consistent level. Figure 3 5,000 shows Blaster activity in late August 2003 compared to activity one year later. The initial growth in observations in August 2003 correlates with the Welchia worm’s ap- pearance on 18 August. The last two days represent the Blaster activity per hour (unique IPs) steady state seen for the next several months. 0 10-8-2003 12-8-2003 14-8-2003 16-8-2003 18-8-2003 The Blaster worm a year later Date The Blaster worm was released roughly two years ago, providing ample opportunity for individuals and organi- Figure 2. The Blaster worm life cycle. The four phases shown include zations to clean up infected machines. We might thus the end of the latency phase, its growth phase, its decay phase, and expect the worm to decay quickly, with only a handful the beginning of its persistence phase. of hosts still infected in August 2004. In reality, a year later, the Blaster worm was not only still scanning the In- ternet, but the remaining infected population was larger exploits. Our measurement infrastructure observed that than expected.
Recommended publications
  • Statistical Structures: Fingerprinting Malware for Classification and Analysis
    Statistical Structures: Fingerprinting Malware for Classification and Analysis Daniel Bilar Wellesley College (Wellesley, MA) Colby College (Waterville, ME) bilar <at> alum dot dartmouth dot org Why Structural Fingerprinting? Goal: Identifying and classifying malware Problem: For any single fingerprint, balance between over-fitting (type II error) and under- fitting (type I error) hard to achieve Approach: View binaries simultaneously from different structural perspectives and perform statistical analysis on these ‘structural fingerprints’ Different Perspectives Idea: Multiple perspectives may increase likelihood of correct identification and classification Structural Description Statistical static / Perspective Fingerprint dynamic? Assembly Count different Opcode Primarily instruction instructions frequency static distribution Win 32 API Observe API calls API call vector Primarily call made dynamic System Explore graph- Graph structural Primarily Dependence modeled control and properties static Graph data dependencies Fingerprint: Opcode frequency distribution Synopsis: Statically disassemble the binary, tabulate the opcode frequencies and construct a statistical fingerprint with a subset of said opcodes. Goal: Compare opcode fingerprint across non- malicious software and malware classes for quick identification and classification purposes. Main result: ‘Rare’ opcodes explain more data variation then common ones Goodware: Opcode Distribution 1, 2 ---------.exe Procedure: -------.exe 1. Inventoried PEs (EXE, DLL, ---------.exe etc) on XP box with Advanced Disk Catalog 2. Chose random EXE samples size: 122880 with MS Excel and Index totalopcodes: 10680 3, 4 your Files compiler: MS Visual C++ 6.0 3. Ran IDA with modified class: utility (process) InstructionCounter plugin on sample PEs 0001. 002145 20.08% mov 4. Augmented IDA output files 0002. 001859 17.41% push with PEID results (compiler) 0003. 000760 7.12% call and general ‘functionality 0004.
    [Show full text]
  • Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress
    Order Code RL32114 Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Updated January 29, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Summary Cybercrime is becoming more organized and established as a transnational business. High technology online skills are now available for rent to a variety of customers, possibly including nation states, or individuals and groups that could secretly represent terrorist groups. The increased use of automated attack tools by cybercriminals has overwhelmed some current methodologies used for tracking Internet cyberattacks, and vulnerabilities of the U.S. critical infrastructure, which are acknowledged openly in publications, could possibly attract cyberattacks to extort money, or damage the U.S. economy to affect national security. In April and May 2007, NATO and the United States sent computer security experts to Estonia to help that nation recover from cyberattacks directed against government computer systems, and to analyze the methods used and determine the source of the attacks.1 Some security experts suspect that political protestors may have rented the services of cybercriminals, possibly a large network of infected PCs, called a “botnet,” to help disrupt the computer systems of the Estonian government. DOD officials have also indicated that similar cyberattacks from individuals and countries targeting economic,
    [Show full text]
  • The Downadup Codex a Comprehensive Guide to the Threat’S Mechanics
    Security Response The Downadup Codex A comprehensive guide to the threat’s mechanics. Edition 2.0 Introduction Contents Introduction.............................................................1 Since its appearance in late-2008, the Downadup worm has become Editor’s Note............................................................5 one of the most wide-spread threats to hit the Internet for a number of Increase in exploit attempts against MS08-067.....6 years. A complex piece of malicious code, this threat was able to jump W32.Downadup infection statistics.........................8 certain network hurdles, hide in the shadows of network traffic, and New variants of W32.Downadup.B find new ways to propagate.........................................10 defend itself against attack with a deftness not often seen in today’s W32.Downadup and W32.Downadup.B threat landscape. Yet it contained few previously unseen features. What statistics................................................................12 set it apart was the sheer number of tricks it held up its sleeve. Peer-to-peer payload distribution...........................15 Geo-location, fingerprinting, and piracy...............17 It all started in late-October of 2008, we began to receive reports of A lock with no key..................................................19 Small improvements yield big returns..................21 targeted attacks taking advantage of an as-yet unknown vulnerability Attempts at smart network scanning...................23 in Window’s remote procedure call (RPC) service. Microsoft quickly Playing with Universal Plug and Play...................24 released an out-of-band security patch (MS08-067), going so far as to Locking itself out.................................................27 classify the update as “critical” for some operating systems—the high- A new Downadup variant?......................................29 Advanced crypto protection.................................30 est designation for a Microsoft Security Bulletin.
    [Show full text]
  • Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G
    Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G. van Eeten, Delft University of Technology https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/asghari This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere and Michel J.G. van Eeten Delft University of Technology Abstract more sophisticated C&C mechanisms that are increas- ingly resilient against takeover attempts [30]. Research on botnet mitigation has focused predomi- In pale contrast to this wealth of work stands the lim- nantly on methods to technically disrupt the command- ited research into the other side of botnet mitigation: and-control infrastructure. Much less is known about the cleanup of the infected machines of end users. Af- effectiveness of large-scale efforts to clean up infected ter a botnet is successfully sinkholed, the bots or zom- machines. We analyze longitudinal data from the sink- bies basically remain waiting for the attackers to find hole of Conficker, one the largest botnets ever seen, to as- a way to reconnect to them, update their binaries and sess the impact of what has been emerging as a best prac- move the machines out of the sinkhole. This happens tice: national anti-botnet initiatives that support large- with some regularity. The recent sinkholing attempt of scale cleanup of end user machines.
    [Show full text]
  • Undergraduate Report
    UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually
    [Show full text]
  • Exploring Corporate Decision Makers' Attitudes Towards Active Cyber
    Protecting the Information Society: Exploring Corporate Decision Makers’ Attitudes towards Active Cyber Defence as an Online Deterrence Option by Patrick Neal A Dissertation Submitted to the College of Interdisciplinary Studies in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF SOCIAL SCIENCES Royal Roads University Victoria, British Columbia, Canada Supervisor: Dr. Bernard Schissel February, 2019 Patrick Neal, 2019 COMMITTEE APPROVAL The members of Patrick Neal’s Dissertation Committee certify that they have read the dissertation titled Protecting the Information Society: Exploring Corporate Decision Makers’ Attitudes towards Active Cyber Defence as an Online Deterrence Option and recommend that it be accepted as fulfilling the dissertation requirements for the Degree of Doctor of Social Sciences: Dr. Bernard Schissel [signature on file] Dr. Joe Ilsever [signature on file] Ms. Bessie Pang [signature on file] Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copy of the dissertation to Royal Roads University. The dissertation supervisor confirms to have read this dissertation and recommends that it be accepted as fulfilling the dissertation requirements: Dr. Bernard Schissel[signature on file] Creative Commons Statement This work is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 2.5 Canada License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ca/ . Some material in this work is not being made available under the terms of this licence: • Third-Party material that is being used under fair dealing or with permission. • Any photographs where individuals are easily identifiable. Contents Creative Commons Statement............................................................................................
    [Show full text]
  • Miscellaneous: Malware Cont'd & Start on Bitcoin
    Miscellaneous: Malware cont’d & start on Bitcoin CS 161: Computer Security Prof. Raluca Ada Popa April 19, 2018 Credit: some slides are adapted from previous offerings of this course Viruses vs. Worms VIRUS WORM Propagates By infecting Propagates automatically other programs By copying itself to target systems Usually inserted into A standalone program host code (not a standalone program) Another type of virus: Rootkits Rootkit is a ”stealthy” program designed to give access to a machine to an attacker while actively hiding its presence Q: How can it hide itself? n Create a hidden directory w /dev/.liB, /usr/src/.poop and similar w Often use invisiBle characters in directory name n Install hacked Binaries for system programs such as netstat, ps, ls, du, login Q: Why does it Become hard to detect attacker’s process? A: Can’t detect attacker’s processes, files or network connections By running standard UNIX commands! slide 3 Sony BMG copy protection rootkit scandal (2005) • Sony BMG puBlished CDs that apparently had copy protection (for DRM). • They essentially installed a rootkit which limited user’s access to the CD. • It hid processes that started with $sys$ so a user cannot disaBle them. A software engineer discovered the rootkit, it turned into a Big scandal Because it made computers more vulneraBle to malware Q: Why? A: Malware would choose names starting with $sys$ so it is hidden from antivirus programs Sony BMG pushed a patch … But that one introduced yet another vulneraBility So they recalled the CDs in the end Detecting Rootkit’s
    [Show full text]
  • GQ: Practical Containment for Measuring Modern Malware Systems
    GQ: Practical Containment for Measuring Modern Malware Systems Christian Kreibich Nicholas Weaver Chris Kanich ICSI & UC Berkeley ICSI & UC Berkeley UC San Diego [email protected] [email protected] [email protected] Weidong Cui Vern Paxson Microsoft Research ICSI & UC Berkeley [email protected] [email protected] Abstract their behavior, sometimes only for seconds at a time (e.g., to un- Measurement and analysis of modern malware systems such as bot- derstand the bootstrapping behavior of a binary, perhaps in tandem nets relies crucially on execution of specimens in a setting that en- with static analysis), but potentially also for weeks on end (e.g., to ables them to communicate with other systems across the Internet. conduct long-term botnet measurement via “infiltration” [13]). Ethical, legal, and technical constraints however demand contain- This need to execute malware samples in a laboratory setting ex- ment of resulting network activity in order to prevent the malware poses a dilemma. On the one hand, unconstrained execution of the from harming others while still ensuring that it exhibits its inher- malware under study will likely enable it to operate fully as in- ent behavior. Current best practices in this space are sorely lack- tended, including embarking on a large array of possible malicious ing: measurement researchers often treat containment superficially, activities, such as pumping out spam, contributing to denial-of- sometimes ignoring it altogether. In this paper we present GQ, service floods, conducting click fraud, or obscuring other attacks a malware execution “farm” that uses explicit containment prim- by proxying malicious traffic.
    [Show full text]
  • Lexisnexis® Congressional Copyright 2003 Fdchemedia, Inc. All Rights
    LexisNexis® Congressional Copyright 2003 FDCHeMedia, Inc. All Rights Reserved. Federal Document Clearing House Congressional Testimony September 10, 2003 Wednesday SECTION: CAPITOL HILL HEARING TESTIMONY LENGTH: 4090 words COMMITTEE: HOUSE GOVERNMENT REFORM SUBCOMMITTEE: TECHNOLOGY, INFORMATION POLICY, INTERGOVERNMENTAL RELATIONS, AND CENSUS HEADLINE: COMPUTER VIRUS PROTECTION TESTIMONY-BY: RICHARD PETHIA, DIRECTOR AFFILIATION: CERT COORDINATION CENTER BODY: Statement of Richard Pethia Director, CERT Coordination Center Subcommittee on Technology, Information Policy, Intergovernmental Relations, and the Census Committee on House Government Reform September 10, 2003 Introduction Mr. Chairman and Members of the Subcommittee: My name is Rich Pethia. I am the director of the CERTO Coordination Center (CERT/CC). Thank you for the opportunity to testify on the important issue of cyber security. Today I will discuss viruses and worms and the steps we must take to protect our systems from them. The CERT/CC was formed in 1988 as a direct result of the first Internet worm. It was the first computer security incident to make headline news, serving as a wake-up call for network security. In response, the CERT/CC was established by the Defense Advanced Research Projects Agency at Carnegie Mellon University's Software Engineering Institute, in Pittsburgh. Our mission is to serve as a focal point to help resolve computer security incidents and vulnerabilities, to help others establish incident response capabilities, and to raise awareness of computer security issues and help people understand the steps they need to take to better protect their systems. We activated the center in just two weeks, and we have worked hard to maintain our ability to react quickly.
    [Show full text]
  • Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone
    Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone Thomas Dübendorfer, Arno Wagner, Theus Hossmann, Bernhard Plattner ETH Zurich, Switzerland [email protected] DIMVA 2005, Wien, Austria Agenda 1) Introduction 2) Flow-Level Backbone Traffic 3) Network Worm Blaster.A 4) E-Mail Worm Sobig.F 5) Conclusions and Outlook © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -2- 1) Introduction Authors Prof. Dr. Bernhard Plattner Professor, ETH Zurich (since 1988) Head of the Communication Systems Group at the Computer Engineering and Networks Laboratory TIK Prorector of education at ETH Zurich (since 2005) Thomas Dübendorfer Dipl. Informatik-Ing., ETH Zurich, Switzerland (2001) ISC2 CISSP (Certified Information System Security Professional) (2003) PhD student at TIK, ETH Zurich (since 2001) Network security research in the context of the DDoSVax project at ETH Further authors: Arno Wagner, Theus Hossmann © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -3- 1) Introduction Worm Analysis Why analyse Internet worms? • basis for research and development of: • worm detection methods • effective countermeasures • understand network impact of worms Wasn‘t this already done by anti-virus software vendors? • Anti-virus software works with host-centric signatures Research method used 1. Execute worm code in an Internet-like testbed and observe infections 2. Measure packet-level traffic and determine network-centric worm signatures on flow-level 3. Extensive analysis of flow-level traffic of the actual worm outbreaks captured in a Swiss backbone © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -4- 1) Introduction Related Work Internet backbone worm analyses: • Many theoretical worm spreading models and simulations exist (e.g.
    [Show full text]
  • Computer Security CS 426 Lecture 15
    Computer Security CS 426 Lecture 15 Malwares CS426 Fall 2010/Lecture 15 1 Trapdoor • SttitittSecret entry point into a system – Specific user identifier or password that circumvents normal security procedures. • Commonlyyy used by developers – Could be included in a compiler. CS426 Fall 2010/Lecture 15 2 Logic Bomb • Embedded in legitimate programs • Activated when specified conditions met – E.g., presence/absence of some file; Particular date/time or particular user • When triggered, typically damages system – Modify/delete files/disks CS426 Fall 2010/Lecture 15 3 Examppgle of Logic Bomb • In 1982 , the Trans-Siber ian Pipe line inc iden t occurred. A KGB operative was to steal the plans fhititdtltditfor a sophisticated control system and its software from a Canadian firm, for use on their Siberi an pi peli ne. The CIA was tippe d o ff by documents in the Farewell Dossier and had the company itlibbithinsert a logic bomb in the program for sabotage purposes. This eventually resulted in "the most monu mental non-nu clear ex plosion and fire ever seen from space“. CS426 Fall 2010/Lecture 15 4 Trojan Horse • Program with an overt Example: Attacker: (expected) and covert effect Place the following file cp /bin/sh /tmp/.xxsh – Appears normal/expected chmod u+s,o+x /tmp/.xxsh – Covert effect violates security policy rm ./ls • User tricked into executing ls $* Trojan horse as /homes/victim/ls – Expects (and sees) overt behavior – Covert effect performed with • Victim user’s authorization ls CS426 Fall 2010/Lecture 15 5 Virus • Self-replicating
    [Show full text]
  • MODELING the PROPAGATION of WORMS in NETWORKS: a SURVEY 943 in Section 2, Which Set the Stage for Later Sections
    942 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 2, SECOND QUARTER 2014 Modeling the Propagation of Worms in Networks: ASurvey Yini Wang, Sheng Wen, Yang Xiang, Senior Member, IEEE, and Wanlei Zhou, Senior Member, IEEE, Abstract—There are the two common means for propagating attacks account for 1/4 of the total threats in 2009 and nearly worms: scanning vulnerable computers in the network and 1/5 of the total threats in 2010. In order to prevent worms from spreading through topological neighbors. Modeling the propa- spreading into a large scale, researchers focus on modeling gation of worms can help us understand how worms spread and devise effective defense strategies. However, most previous their propagation and then, on the basis of it, investigate the researches either focus on their proposed work or pay attention optimized countermeasures. Similar to the research of some to exploring detection and defense system. Few of them gives a nature disasters, like earthquake and tsunami, the modeling comprehensive analysis in modeling the propagation of worms can help us understand and characterize the key properties of which is helpful for developing defense mechanism against their spreading. In this field, it is mandatory to guarantee the worms’ spreading. This paper presents a survey and comparison of worms’ propagation models according to two different spread- accuracy of the modeling before the derived countermeasures ing methods of worms. We first identify worms characteristics can be considered credible. In recent years, although a variety through their spreading behavior, and then classify various of models and algorithms have been proposed for modeling target discover techniques employed by them.
    [Show full text]