Design of a Long-Range, Hydrogen-Powered Transport Aircraft
Total Page:16
File Type:pdf, Size:1020Kb
Design of a Long Range Hydrogen Powered Transport A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Matthew J. Smith May, 2016 approved by Dr. Nikos Mourtos Faculty Advisor © 2016 Matthew J. Smith ALL RIGHTS RESERVED The Designated Project Advisor(s) Approves the Thesis Titled DESIGN OF A LONG RANGE HYDROGEN POWERED TRANSPORT by Matthew J. Smith APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING SAN JOSÉ STATE UNIVERSITY May 2016 Dr. N. Mourtos Department of Aerospace Engineering Advisor ABSTRACT DESIGN OF A LONG RANGE HYDROGEN POWERED TRANSPORT by Matthew J. Smith Growing concerns over pollution and the rising costs of jet fuel has charged aviation companies to research into alternative fuels. Liquid hydrogen (LH2) is a promising alternative which is highly favorable due to its high specific energy content which makes it three times lighter than current jet fuels (Jet-A). In addition, LH2’s combustion with air produces water (H2O) and negligible amounts of harmful pollutants when compared with Jet-A. The major issue in adapting liquid hydrogen as a jet fuel would be its low energy density, requiring engineers to accommodate a fuel volume that is four times larger than Jet-A counterparts. In an effort to reduce the fuel volume, an unconventional blended wing body (BWB) configuration was selected for its large internal volume and high aerodynamic efficiency. Although BWB have several desirable qualities, there are significant drawbacks. BWB’s have low maximum lift coefficients and difficulty in maintaining stability. Fortunately, BWB drawbacks can be mitigated to an extent when paired with LH2 fuel. Although the high aerodynamic efficiency of a BWB configuration would significantly improve liquid hydrogen’s chances at being a viable alternative jet fuel, its inherently heavier fuel system requirements would limit its usage to flights of over 7,000 nautical miles. As a result, the mission requirements and goals of the BWB-LH2 design are similar to current high seating capacity long range conventional transport aircraft such as the B747 and A380. Conservative estimates on take-off weight and LH2 fuel volume are 649,384 lbs and 203,575 US gallons, respectively. Through several iterations of the design, a reasonable balance between the fuel tanks and a 3-class passenger area is achieved. Although these two compartments are satisfied, there is a noticeable lack of luggage space. The overall concept of a BWB- LH2 design is indeed feasible, although the current design presented in the report will need further optimization and testing before construction can begin. Current fuel prices for Jet- A1 and LH2 will prevent concepts such as the BWB- LH2 from entering production for at least two decades, but the switch to a cheaper and seemingly limitless fuel supply is inevitable. ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Nikos Mourtos, for his guidance through the particularly difficult sections of this conceptual design. I would also like to thank the San Jose State University staff and students for their aid and support for the seven years I have spent on this campus. In particular, I would like to thank fellow students and graduates Brian Graham, Jimmy Rico, Matthew Miller, Arash Alex Mazhari, and Long Kim Lu for helping me through my many anxiety attacks. Last, I would like to thank my parents and older brother for their support and tutelage. v TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... ix LIST OF FIGURES ........................................................................................................................ x NOMENCLATURE ...................................................................................................................... xi 1. PROLOGUE ............................................................................................................................... 1 1.1 Motivation .............................................................................................................................. 1 1.2 Background ............................................................................................................................ 3 1.2.1 Hydrogen....................................................................................................................... 3 1.2.2 Blended Wing Body ...................................................................................................... 4 1.3 Objective ................................................................................................................................ 7 1.3.1 Comparable Commercial Aircraft................................................................................. 7 2. MISSION .................................................................................................................................... 8 2.1 Mission Requirements ........................................................................................................... 8 2.2 Mission Profile ....................................................................................................................... 8 3. MISSION WEIGHT ESTIMATION .......................................................................................... 9 3.1 Similar Aircraft and Hydrogen Adjustment ........................................................................... 9 3.2 Mission Weight Determination ............................................................................................ 11 3.3 Weight Summary ................................................................................................................. 14 4. PERFORMANCE SIZING ....................................................................................................... 15 4.1 Equations and Example Calculations................................................................................... 15 4.1.1 Stall Velocty................................................................................................................ 15 4.1.2 Take-Off Performance ................................................................................................ 15 4.1.3 Landing Performance .................................................................................................. 16 4.1.4 Maneuvering Constraints ............................................................................................ 17 4.2 Matching Graph ................................................................................................................... 18 4.3 Initial Drag Polar Calculations............................................................................................. 19 5. CONFIGURATION SELECTION ........................................................................................... 20 5.1 Mission and Performance Goals .......................................................................................... 20 5.2 Propulsion Selection ............................................................................................................ 21 vi 5.3 Fuselage Selection.......................................................................................................................................21 5.4 Empenage/Control Surface Selection....................................................................................................22 5.5 Configuration Model..................................................................................................................................22 6. INTERNAL VOLUME SETUP...................................................................................................................23 6.1 Proposed Layout..........................................................................................................................................23 6.2 Passenger Area.............................................................................................................................................24 6.3 Hydrogen Fuel Storage..............................................................................................................................27 6.3.1 Hydrogen Fuel Tank Design..........................................................................................................28 7. WING DESIGN.................................................................................................................................................28 7.1 Centerbody Airfoil......................................................................................................................................28 7.2 Outboard Airfoil...........................................................................................................................................30 7.3 Wing Analysis Program.............................................................................................................................32 7.4 Winglet Design.............................................................................................................................................33 8. LANDING GEAR DESIGN..........................................................................................................................34 9. WEIGHT AND BALANCE...........................................................................................................................35