CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Fabrice Orgogozo Version

Total Page:16

File Type:pdf, Size:1020Kb

CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Fabrice Orgogozo Version CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Fabrice Orgogozo‡ version : 69b422d 2017-03-30 18:28:46 +0200 Résumé. Soient 푆 un schéma nœthérien et 푓 ∶ 푋 → 푆 un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible ℱ de ℤ/푛ℤ-modules sur 푋, 푖 les faisceaux de ℤ/푛ℤ-modules 횁 푓⋆ℱ , obtenus par image directe (pour la to- pologie étale), sont également constructibles : il existe une stratification 픖 de 푆 telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particu- lier où 푆 est génériquement de caractéristique nulle ou bien les faisceaux ℱ sont constants (de torsion inversible sur 푆), on étudie ici la dépendance de 픖 en ℱ . On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les 푖 foncteurs 횁 푓⋆. Si 푓 n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à 푆. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres 푖 ℓ des faisceaux 횁 푓⋆픽ℓ, où parcourt les nombres premiers inversibles sur 푆. Abstract. Let 푆 be a Noetherian scheme and 푓 ∶ 푋 → 푆 a proper morphism. By SGA 4 XIV, for any constructible sheaf ℱ of ℤ/푛ℤ-modules on 푋, the sheaves 푖 of ℤ/푛ℤ-modules 횁 푓⋆ℱ obtained by direct image (for the étale topology) are themselves constructible, that is, there is a stratification 픖 of 푆 on whose strata these sheaves are locally constant constructible. After previous work of N. Katz and G. Laumon, or L. Illusie, on the special case in which 푆 is generically of characteristic zero or the sheaves ℱ are constant (with invertible torsion on 푆), here we study the dependency of 픖 on ℱ . We show that a natural “uniform” tameness and constructibility condition satisfied by constant sheaves, which was 푖 introduced by O. Gabber, is stable under the functors 횁 푓⋆. If 푓 is not proper, this result still holds assuming tameness at infinity, relative to 푆. We also prove the existence of uniform bounds on Betti numbers, in particular for the stalks of the 푖 ℓ sheaves 횁 푓⋆픽ℓ, where ranges through all prime numbers invertible on 푆. Table des matières Introduction 2 1. Définitions, sorites et préliminaires topologiques 4 2. Lemmes d’Abhyamkar et courbes nodales 14 3. Image directe par un morphisme propre 22 4. Image directe par une immersion ouverte 33 5. Six opérations 40 6. Applications 43 ‡CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France [email protected] 2 CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Introduction 0.1. Soient 푆 un schéma et 푓 ∶ 푋 → 푆 un morphisme propre de présentation finie. D’après un théorème de finitude classique, dû à Michael Artin et Alexander Grothendieck ([SGA 4 XIV, 1.1]), pour tout faisceau constructible ℱ de ℤ/푛ℤ- 푖 modules sur 푋, les faisceaux de ℤ/푛ℤ-modules 횁 푓⋆ℱ , obtenus par image directe, sont également constructibles : (lorsque 푆 est cohérent, par exemple nœthérien) il 푖 existe une stratification 픖 de 푆 telle que les faisceaux 횁 푓⋆ℱ soient localement constants et de présentation finie sur les strates. (Ils sont également nuls pour 푖 ≫ 0 indépendamment de ℱ .) À 푓 fixé, il est naturel de s’interroger sur la dépendance de 픖 en ℱ , notam- ment sous la forme suivante, qui n’est qu’un cas particulier des questions que l’on souhaite aborder ici : Existe-t-il une stratification 픖 qui convienne pour tous les fais- 푖 ceaux 횁 푓⋆ℤ/푛ℤ, où 푛 parcourt les entiers inversibles sur 푆 ? (Notons que si l’entier 푛 parcourt les puissances d’un même nombre premier ℓ, comme cela est naturel du point de vue de la cohomologie ℓ-adique, la réponse à la question précédente est trivialement « oui ».) 0.2. Si 푆 est de type fini sur le corps ℂ des nombres complexes, l’existence d’une telle stratification est bien connue en vertu du résultat analogue pour le morphisme d’espaces topologiques 푋(ℂ) → 푆(ℂ) — cf. par exemple [Borel 1984, V.10.16] ou [Beilinson, Bernstein et Deligne 1982, p. 153, premier paragraphe] — et du théo- rème de comparaison entre cohomologie de Betti et cohomologie étale de M. Artin et A. Grothendieck ([SGA 4 XVI, 4.1]). 0.3. Bien entendu, tant pour les applications que pour les démonstrations, il est utile de ne pas se restreindre à des faisceaux constants mais de considérer des fais- ceaux — et même des complexes — constructibles le long d’une stratification 픛 de 푋 (au sens évident rappelé en 1.1.3). Cependant, en cohomologie étale, des phéno- mènes de ramification sauvage font que l’on ne peut s’attendre à ce que, donnés un morphisme propre 푓 ∶ 푋 → 푆 et 픛 une stratification de 푋, il existe une stratification 픖 de 푆 telle que les images directes supérieures par 푓 de faisceaux sur 푋 constructibles le long de 픛 soient constructibles le long de 픖. En effet, si par exemple ℓ est un nombre premier fixé, 푘 un corps algébriquement clos de ca- × ractéristique 푝 > 0 divisant ℓ − 1 et 휓 ∶ ℤ/푝ℤ → 픽ℓ un caractère non-trivial, les 1 1 ℓ-faisceaux d’Artin-Schreier sur sont lisses pour 픽 ℒ휆 ≔ ℒ휓 ((푥 − 휆)푦) 퐀푥/픽푝 × 퐀푦/픽푝 chaque mais les faisceaux image directe exceptionnelle 2 pr ne sont 휆 ∈ 푘 횁 1! ℒ휆 pas constructibles le long d’une même stratification de 1 , indépendante de : le 퐀푥/픽푝 휆 faisceau 2 pr est non nul et à support dans . (Voir [Laumon 1987, 1.2.2.2] 횁 1! ℒ휆 {휆} pour l’analogue ℓ-adique et [Orgogozo 2003, p. 139—140] pour une discussion du même phénomène dans une autre perspective.) La flèche 2 pr 2 pr 횁 1! ℒ휆 → 횁 1⋆ ℒ휆 d’oubli des supports étant un isomorphisme ([Laumon 1987, 1.3.1.1]), on voit éga- lement que l’on ne dispose pas d’un analogue uniforme « naïf » du théorème [Th. finitude, 1.9 (ii)] de commutation au changement de base générique : en tout point CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE 3 au voisinage duquel 2 pr commute au changement de base, sa fibre est né- 횁 1⋆ ℒ휆 cessairement nulle. Cependant, comme l’a démontré Luc Illusie — motivé par une question de Jean-Pierre Serre —, la situation est aussi bonne que possible si l’on considère des coefficients constants (voir [Illusie 2010]). La formule de Grothendieck-Ogg-Šafarevič ([SGA 5 X, 7.2]) montre également que l’on ne peut obtenir de bornes uniformes sur les nombres de Betti, comme celles rappelées au paragraphe suivant, sans hypothèse de modération. 0.4. Dans [Katz et Laumon 1985, §3] (voir aussi par exemple [Fouvry et Katz 2001, §2] et [Katz 1990, §13]) sont établis des résultats intermédiaires entre l’énon- cé topologique rappelé ci-dessus et des énoncés, à démontrer, tenant compte de la ramification sauvage. Nicholas Katz et Gérard Laumon établissent notamment le résultat suivant, sous l’hypothèse technique supplémentaire que 푆 est de type fini sur un schéma nœthérien régulier de dimension inférieure ou égale à 1 ([Katz et Laumon 1985, 3.1.2]) : il existe un entier 푁 ⩾ 1 et une stratification 픖 de 푆 tels que 푏 pour chaque nombre premier ℓ, chaque 풦 ∈ Ob 햣푐(푋[1/푁ℓ], ℚℓ) constructible le 푏 long de 픛[1/푁ℓ], le complexe 횁푓⋆풦 ∈ Ob 햣푐(푆[1/푁ℓ], ℚℓ) est constructible le long de 픖[1/푁ℓ]. (« Constructible le long de … » : voir 1.1.3.) De plus, les auteurs majorent uniformément la taille des images directes : il existe une constante 퐶 telle que pour chaque 푠 ∈ 푆[1/푁ℓ] on ait l’inégalité ‖횁푓!풦‖(푠) ⩽ 퐶 ⋅ sup ‖풦‖(푥), 푥∈푓 −1(푠) où dim 푖 pour un choix arbitraire de point géométrique ‖풦‖(푥) ≔ ∑푖 ℚℓ 홷 (풦)푥 푥 au-dessus de 푥 ∈ 푋. Ce résultat s’appuie sur la résolution des singularités d’Hironaka et n’est inté- ressant que si la caractéristique générique de 푆 est nulle. Cette hypothèse permet également, grâce au lemme d’Abhyaṁkar relatif (cf. [ibid., §3.4.2] et [SGA 1 XIII, 5.5]), d’ignorer la ramification sauvage. 0.5. L’objectif de ce texte est de s’affranchir de ces restrictions : les « fibrations élémentaires » ([SGA 4 XI, §3]) utilisées dans [Katz et Laumon 1985] sont rem- placées par des courbes nodales, dont l’ubiquité a été démontrée par Aise Johann de Jong ([de Jong 1996 ; de Jong 1997]). Armé de cet outil et familier des tech- niques de dévissages en cohomologie étale, la principale difficulté est de trouver un énoncé de stabilité de familles « (uniformément) constructibles et modérées ». On le doit à Ofer Gabber, dont la contribution à cet article ne s’arrête pas là. Un point clef est que « uniformément » doit être interprété localement pour la topolo- gie propre — engendrée par la prétopologie dont les morphismes couvrants sont les morphismes propres et surjectifs — (ou la topologie ℎ), idée que l’on trouve déjà dans une lettre de Richard Pink à N. Katz ([Pink 1995]), pourtant antérieure aux travaux de A. J. de Jong. (L’insuffisance d’une localisation pour la topologie finie est expliquée en 3.2.) Les méthodes employées ici font que la plupart des résultats de cet article sont de démonstration plus simple dans le cas particuliers des schémas de type fini sur un anneau de Dedekind mais nous les énonçons pour des schémas quasi-excellents, 4 CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE quitte à en donner la démonstration en deux temps.
Recommended publications
  • The Work of Pierre Deligne
    THE WORK OF PIERRE DELIGNE W.T. GOWERS 1. Introduction Pierre Deligne is indisputably one of the world's greatest mathematicians. He has re- ceived many major awards, including the Fields Medal in 1978, the Crafoord Prize in 1988, the Balzan Prize in 2004, and the Wolf Prize in 2008. While one never knows who will win the Abel Prize in any given year, it was virtually inevitable that Deligne would win it in due course, so today's announcement is about as small a surprise as such announcements can be. This is the third time I have been asked to present to a general audience the work of the winner of the Abel Prize, and my assignment this year is by some way the most difficult of the three. Two years ago, I talked about John Milnor, whose work in geometry could be illustrated by several pictures. Last year, the winner was Endre Szemer´edi,who has solved several problems with statements that are relatively simple to explain (even if the proofs were very hard). But Deligne's work, though it certainly has geometrical aspects, is not geometrical in a sense that lends itself to pictorial explanations, and the statements of his results are far from elementary. So I am forced to be somewhat impressionistic in my description of his work and to spend most of my time discussing the background to it rather than the work itself. 2. The Ramanujan conjecture One of the results that Deligne is famous for is solving a conjecture of Ramanujan. This conjecture is not the obvious logical starting point for an account of Deligne's work, but its solution is the most concrete of his major results and therefore the easiest to explain.
    [Show full text]
  • Annual Report 2017-2018
    Annual Review 2017 | 2018 ONTENTS C 1 Overview 1 2 Profile 4 3 Research 6 4 Events 9 5 Personnel 13 6 Mentoring 17 7 Structures 18 APPENDICES R1 Highlighted Papers 20 R2 Complete List of Papers 23 E1 HIMR-run Events 29 E2 HIMR-sponsored Events 31 E3 Focused Research Events 39 E4 Future Events 54 P1 Fellows Joining in 2017|2018 59 P2 Fellows Leaving since September 2017 60 P3 Fellows Moving with 3-year Extensions 62 P4 Future Fellows 63 M1 Mentoring Programme 64 1. Overview This has been another excellent year for the Heilbronn Institute, which is now firmly established as a major national mathematical research centre. HIMR has developed a strong brand and is increasingly influential in the UK mathematics community. There is currently an outstanding cohort of Heilbronn Research Fellows doing first-rate research. Recruitment of new Fellows has been most encouraging, as is the fact that many distinguished academic mathematicians continue to work with the Institute. The research culture at HIMR is excellent. Members have expressed a high level of satisfaction. This is especially the case with the Fellows, many of whom have chosen to continue their relationships with the Institute. Our new Fellows come from leading mathematics departments and have excellent academic credentials. Those who left have moved to high-profile groups, including several to permanent academic positions. We currently have 29 Fellows, hosted by 6 universities. We are encouraged by the fact that of the 9 Fellows joining us this year, 5 are women. The achievements of our Fellows this year again range from winning prestigious prizes to publishing in the elite mathematical journals and organising major mathematical meetings.
    [Show full text]
  • Henri Darmon
    Henri Darmon Address: Dept of Math, McGill University, Burnside Hall, Montreal, PQ. E-mail: [email protected] Web Page: http://www.math.mcgill.ca/darmon Telephone: Work (514) 398-2263 Home: (514) 481-0174 Born: Oct. 22, 1965, in Paris, France. Citizenship: Canadian, French, and Swiss. Education: 1987. B.Sc. Mathematics and Computer Science, McGill University. 1991. Ph.D. Mathematics, Harvard University. Thesis: Refined class number formulas for derivatives of L-series. University Positions: 1991-1994. Princeton University, Instructor. 1994-1996. Princeton University, Assistant Professor. 1994-1997. McGill University, Assistant Professor. 1997-2000. McGill University, Associate Professor. 2000- . McGill University, Professor. 2005-2019. James McGill Professor, McGill University. Other positions: 1991-1994. Cercheur hors Qu´ebec, CICMA. 1994- . Chercheur Universitaire, CICMA. 1998- . Director, CICMA (Centre Interuniversitaire en Calcul Math´ematique Alg´ebrique). 1999- . Member, CRM (Centre de Recherches Math´ematiques). 2005-2014. External member, European network in Arithmetic Geometry. Visiting Positions: 1991. IHES, Paris. 1995. Universit´a di Pavia. 1996. Visiting member, MSRI, Berkeley. 1996. Visiting professor and guest lecturer, University of Barcelona. 1997. Visiting Professor, Universit´e Paris VI (Jussieu). 1997. Visitor, Institut Henri Poincar´e. 1998. Visiting Professor and NachDiplom lecturer, ETH, Zuric¨ h. 1999. Visiting professor, Universit`a di Pavia. 2001. Visiting professor, Universit`a di Padova. 2001. Korea Institute for Advanced Study. 2002. Visiting professor, RIMS and Saga University (Japan). 1 2003. Visiting Professor, Universit´e Paris VI, Paris. 2003. Visiting professor, Princeton University. 2004. Visiting Professor, Universit´e Paris VI, Paris. 2006. Visiting Professor, CRM, Barcelona, Spain. 2008. Visiting Professor, Universit´e Paris-Sud (Orsay).
    [Show full text]
  • The Fermat Conjecture
    THE FERMAT CONJECTURE by C.J. Mozzochi, Ph.D. Box 1424 Princeton, NJ 08542 860/652-9234 [email protected] Copyright C.J. Mozzochi, Ph.D. - 2011 THE FERMAT CONJECTURE FADE IN: EXT. OXFORD GRAMMAR SCHOOL -- DAY (1963) A ten-year-old ANDREW WILES is running toward the school to talk with his friend, Peter. INT. HALL OF SCHOOL Andrew Wiles excitedly approaches PETER, who is standing in the hall. ANDREW WILES Peter, I want to show you something very exciting. Let’s go into this classroom. INT. CLASSROOM Andrew Wiles writes on the blackboard: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...positive integers. 3, 5, 7, 11, 13...prime numbers. 23 = 2∙ 2∙ 2 35 = 3∙ 3∙ 3∙ 3∙ 3 xn = x∙∙∙x n-terms and explains to Peter the Fermat Conjecture; as he writes on the blackboard. ANDREW WILES The Fermat Conjecture states that the equation xn + yn = zn has no positive integer solutions, if n is an integer greater than 2. Note that 32+42=52 so the conjecture is not true when n=2. The famous French mathematician Pierre Fermat made this conjecture in 1637. See how beautiful and symmetric the equation is! Peter, in a mocking voice, goes to the blackboard and writes on the blackboard: 1963-1637=326. PETER Well, one thing is clear...the conjecture has been unproved for 326 years...you will never prove it! 2. ANDREW WILES Don’t be so sure. I have already shown that it is only necessary to prove it when n is a prime number and, besides, Fermat could not have known too much more about it than I do.
    [Show full text]
  • Arxiv:2005.14365V1 [Math.NT] 29 May 2020
    VARIATIONS IN THE DISTRIBUTION OF PRINCIPALLY POLARIZED ABELIAN VARIETIES AMONG ISOGENY CLASSES EVERETT W. HOWE Abstract. We show that for a large class of rings R, the number of principally polarized abelian varieties over a finite field in a given simple ordinary isogeny class and with endomorphism ring R is equal either to 0, or to a ratio of class numbers associated to R, up to some small computable factors. This class of rings includes the maximal order of the CM field K associated to the isogeny class (for which the result was already known), as well as the order R generated over Z by Frobenius and Verschiebung. For this latter order, we can use results of Louboutin to estimate the appropriate ratio of class numbers in terms of the size of the base field and the Frobenius angles of the isogeny class. The error terms in our estimates are quite large, but the trigonometric terms in the estimate are suggestive: Combined with a result of Vl˘adut¸on the distribution of Frobenius angles of isogeny classes, they give a heuristic argument in support of the theorem of Katz and Sarnak on the limiting distribution of the multiset of Frobenius angles for principally polarized abelian varieties of a fixed dimension over finite fields. 1. Introduction In this paper we consider the problem of estimating the number of isomorphism classes of principally polarized abelian varieties (A; λ) such that A lies in a given isogeny class of simple ordinary abelian varieties over a finite field. We approach this problem by subdividing isogeny classes into their strata, which are the subsets of an isogeny class consisting of abelian varieties sharing the same endomorphism ring.
    [Show full text]
  • January 2019 Volume 66 · Issue 01
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society January 2019 Volume 66, Number 1 The cover art is from the JMM Sampler, page 84. AT THE AMS BOOTH, JMM 2019 ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices of the American Mathematical Society January 2019 Volume 66, Number 1 © Pomona College © Pomona Talk to Erica about the AMS membership magazine, pick up a free Notices travel mug*, and enjoy a piece of cake. facebook.com/amermathsoc @amermathsoc A WORD FROM... Erica Flapan, Notices Editor in Chief I would like to introduce myself as the new Editor in Chief of the Notices and share my plans with readers. The Notices is an interesting and engaging magazine that is read by mathematicians all over the world. As members of the AMS, we should all be proud to have the Notices as our magazine of record. Personally, I have enjoyed reading the Notices for over 30 years, and I appreciate the opportunity that the AMS has given me to shape the magazine for the next three years. I hope that under my leadership even more people will look forward to reading it each month as much as I do. Above all, I would like the focus of the Notices to be on expository articles about pure and applied mathematics broadly defined. I would like the authors, topics, and writing styles of these articles to be diverse in every sense except for their desire to explain the mathematics that they love in a clear and engaging way.
    [Show full text]
  • MIT Undergraduate Math Association Magazine
    MIT Undergraduate Math Association Magazine Fall 2013 A Note from the UMA President The MIT Undergraduate Math Association is pleased to bring you our Fall 2013 issue of the UMA Magazine! The UMA has published a magazine for the math community at MIT pe- riodically for over 25 years. Now, after a short hiatus, we are The UMA Magazine writing and editing team resuming the tradition. In the Spring, we held a survey to gauge your opinions about The UMA officers: President Josh Alman, Vice President life as a math major at MIT and interests for our magazine. Mitchell Lee, Treasurer Leon Zhou, and Secretary Felipe This issue contains everything you asked for, and more: Hernandez. • Four articles by current MIT undergraduates about math Holden Lee, last year’s Vice President, who continued to that we find interesting. help us despite having graduated. • An interview with Professor Andrew Sutherland, focus- ing on his work and the recent progress toward the Twin Soohyun Park from USWIM, who helped to organize our Prime Conjecture. math articles. • Interviews with mathematics students who graduated Ping Ngai Chung who contributed an article. from MIT and are pursuing various fields of study. Our staff advisor Prof. Ju-Lee Kim. • The more interesting results from our survey. Special thanks to Prof. Andrew Sutherland, Leonid Chin- • Some mathematical nuggets and jokes. delevitch, Delong Meng, and David B. Rush for being in- We hope that you find the content useful and interesting! terviewed for this magazine. An online version is available at the UMA website http:// web.mit.edu/uma/www/, which will also include unabridged copies of our four interviews.
    [Show full text]
  • Jean-Marc Fontaine (1944–2019) Pierre Berthelot, Luc Illusie, Nicholas M
    Jean-Marc Fontaine (1944–2019) Pierre Berthelot, Luc Illusie, Nicholas M. Katz, William Messing, and Peter Scholze Jean-Marc Fontaine passed away on January 29, 2019. For half a century, and up until his very last days, he devoted his immense talent and energy to the development of one of the most powerful tools now available in number theory and arithmetic geometry, 푝-adic Hodge theory. His work has had and will continue to have a tremendous influence. It has many deep applications. With the following texts, we would like to express our admiration, gratitude, and friendship. Jean-Marc was born on March 13, 1944, in Boulogne- Billancourt, a city located in the southwest suburbs of Paris. Boulogne-Billancourt was then mainly known as hosting one of the biggest car plants in France, and as a labor union stronghold. However, Jean-Marc’s family background was different. Close to the Christian Democratic movement, his father, Andr´eFontaine, was a very influential journal- Figure 1. Jean-Marc Fontaine during a visit to China, standing ist and historian, specialist on the Cold War. He worked next to a modern copy of the “Lantingji Xu”. from 1947 to 1991 for the well-known daily newspaper Le Monde, where he served in particular as editor-in-chief In just a few years, Schwartz succeeded in creating an active (1969–85) and director (1985–91). mathematical research center, and became very influential Jean-Marc himself had a natural taste for intellectual de- among the students who wanted to specialize in mathe- bates, and very independent judgement.
    [Show full text]
  • Joint Research Training in Pure and Applied Mathematics
    Narrative Project Description Joint Research Training in Pure and Applied Mathematics 1. Project intent. Although individual ideas of researchers are most important in mathematical research, skills for communication, discussion and collaboration with researchers in diverse mathematical, scientific and other fields are increasingly important. To gain such skills, it is essential for mathematical researchers to talk to other mathematicians whose backgrounds are quite different, especially when they are young (e.g. while they are graduate students or postdocs). For this purpose we would like to exchange graduate students and postdoc researchers in various fields of pure and applied mathematics. Moreover, we propose to organize joint workshops to stimulate this process. Strong groups of researchers at U Tokyo and Princeton share significant common interests, including conformal, complex and algebraic geometry, and fluid mechanics. We already have a lot of research communication and collaborations among high-level faculty. This proposed project will further strengthen those collaborations. While the fields of current collaboration will naturally be emphasized, we would like to cover other branches of mathematics as well, since progress often arises from unanticipated interaction between different fields. The proposed joint project will be supplemented by additional support from “Leading Graduate School Programs, Japan Society for the Promotion of Science”, which is run by the Graduate School of Mathematics at the University of Tokyo. 1 2. Proposed topics and background We choose five specific topics and organize projects to achieve our goal. Three topics "Conformal and CR Geometry", "Arithmetic Geometry" and "Algebraic Geometry" are important topics from pure mathematics, while two topics "Mathematical Fluid Mechanics" and "Multiscale Analysis for Fluid Mechanics and Materials Sciences" are two major fields from applied mathematics.
    [Show full text]
  • Automorphic Functions and Fermat's Last Theorem(5)
    Automorphic Functions And Fermat’s Last Theorem(5) Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China [email protected] Abstract In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.” This means: xyznnnn+ =>(2) has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for exponent 3[8]. In this paper using automorphic functions we prove FLT for exponents 6P and 2P , where P is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields ⎛⎞21nn− 2 ii−1 ( ) exp⎜⎟∑∑tJii= SJ , 1 ⎝⎠ii==11 2n where J denotes a 2n th root of negative unity, J = −1, n is an odd number, ti are the real numbers. Si is called the automorphic functions (complex trigonometric functions) of order 2n with (2n − 1) variables [5,7]. ⎡⎤n−3 i−1 2 (1)−−⎛⎞ (iij 1)π B ⎛ ( −+ 1)(2 1)π ⎞ Se=+++⎢⎥H cosβθ ej cos i ⎢⎥⎜⎟∑ ⎜j ⎟ nn⎝⎠22j=0 ⎝ ⎠ ⎣⎦⎢⎥ n−3 2 1D ⎛⎞ (ij−+ 1)(2 1)π j , ( ) +−∑ e cos⎜⎟φ j 2 nnj=0 ⎝⎠2 where in=1,...,2 ; n−1 n α 1+α H = ∑ t2α (−1) , β = ∑ t2α −1 (−1) α =1 α =1 1 2n−1 (2 j +1)απ 2n−1 (2 j +1)απ α 1+α , B j = ∑ tα (−1) cos , θ j = ∑ tα (−1) sin α =1 2n α =1 2n 2n−1 (2 j +1)απ 2n−1 (2 j +1)απ , D j = ∑ tα cos , φ j = ∑ tα sin α =1 2n α =1 2n n−3 2 ( ) 2H + 2∑ (B j + D j ) = 0 .
    [Show full text]
  • What Is Number Theory?
    Chapter 1 What Is Number Theory? Number theory is the study of the set of positive whole numbers 1; 2; 3; 4; 5; 6; 7;:::; which are often called the set of natural numbers. We will especially want to study the relationships between different sorts of numbers. Since ancient times, people have separated the natural numbers into a variety of different types. Here are some familiar and not-so-familiar examples: odd 1; 3; 5; 7; 9; 11;::: even 2; 4; 6; 8; 10;::: square 1; 4; 9; 16; 25; 36;::: cube 1; 8; 27; 64; 125;::: prime 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31;::: composite 4; 6; 8; 9; 10; 12; 14; 15; 16;::: 1 (modulo 4) 1; 5; 9; 13; 17; 21; 25;::: 3 (modulo 4) 3; 7; 11; 15; 19; 23; 27;::: triangular 1; 3; 6; 10; 15; 21;::: perfect 6; 28; 496;::: Fibonacci 1; 1; 2; 3; 5; 8; 13; 21;::: Many of these types of numbers are undoubtedly already known to you. Oth- ers, such as the “modulo 4” numbers, may not be familiar. A number is said to be congruent to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and sim- ilarly for the 3 (modulo 4) numbers. A number is called triangular if that number of pebbles can be arranged in a triangle, with one pebble at the top, two pebbles in the next row, and so on. The Fibonacci numbers are created by starting with 1 and 1. Then, to get the next number in the list, just add the previous two.
    [Show full text]
  • Motives and L-Functions
    Current Developments in Mathematics, 2018 Motives and L-functions Frank Calegari Abstract. We survey some conjectures and recent developments in the Langlands program, especially on the conjectures linking motives and Galois representations with automorphic forms and L-functions. We then give an idiosyncratic discussion of various recent modifications of the Taylor–Wiles method due in part to the author in collaboration with David Geraghty, and then give some applications. The final goal is to give some hints about ideas in recent joint work with George Boxer, Toby Gee, and Vincent Pilloni. This is an expanded version of the author’s talk in the 2018 Current Developments in Mathematics conference. It will be presented in three parts: exposition, development, and capitulation. Contents 1. Part I: Introduction 2 1.1. While you sit here (as I give the talk) 2 1.2. Acknowledgments 3 1.3. Introduction 3 1.4. Cycle Maps 4 1.5. Varieties over number fields 6 1.6. p-adic Hodge Theory 8 1.7. Zero Dimensional Varieties 10 1.8. Elliptic Curves 11 1.9. Motives and the Fontaine–Mazur Conjecture 13 1.10. Compatible Systems 15 1.11. The Brauer Group 16 1.12. Arithmetic L-functions 18 1.13. Sato–Tate, and a question I learnt from Nick Katz 20 2. Part II: The Modified Taylor–Wiles method 23 2.1. The Taylor–Wiles method Part One: Formalism of Galois Deformations 23 2.2. The Taylor–Wiles method Part Two: Galois Representations for GL(1) 25 2.3. The Taylor–Wiles method Part Three: Automorphic forms for GL(1) 30 2.4.
    [Show full text]