Mathematics People
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Work of Pierre Deligne
THE WORK OF PIERRE DELIGNE W.T. GOWERS 1. Introduction Pierre Deligne is indisputably one of the world's greatest mathematicians. He has re- ceived many major awards, including the Fields Medal in 1978, the Crafoord Prize in 1988, the Balzan Prize in 2004, and the Wolf Prize in 2008. While one never knows who will win the Abel Prize in any given year, it was virtually inevitable that Deligne would win it in due course, so today's announcement is about as small a surprise as such announcements can be. This is the third time I have been asked to present to a general audience the work of the winner of the Abel Prize, and my assignment this year is by some way the most difficult of the three. Two years ago, I talked about John Milnor, whose work in geometry could be illustrated by several pictures. Last year, the winner was Endre Szemer´edi,who has solved several problems with statements that are relatively simple to explain (even if the proofs were very hard). But Deligne's work, though it certainly has geometrical aspects, is not geometrical in a sense that lends itself to pictorial explanations, and the statements of his results are far from elementary. So I am forced to be somewhat impressionistic in my description of his work and to spend most of my time discussing the background to it rather than the work itself. 2. The Ramanujan conjecture One of the results that Deligne is famous for is solving a conjecture of Ramanujan. This conjecture is not the obvious logical starting point for an account of Deligne's work, but its solution is the most concrete of his major results and therefore the easiest to explain. -
Annual Report 2017-2018
Annual Review 2017 | 2018 ONTENTS C 1 Overview 1 2 Profile 4 3 Research 6 4 Events 9 5 Personnel 13 6 Mentoring 17 7 Structures 18 APPENDICES R1 Highlighted Papers 20 R2 Complete List of Papers 23 E1 HIMR-run Events 29 E2 HIMR-sponsored Events 31 E3 Focused Research Events 39 E4 Future Events 54 P1 Fellows Joining in 2017|2018 59 P2 Fellows Leaving since September 2017 60 P3 Fellows Moving with 3-year Extensions 62 P4 Future Fellows 63 M1 Mentoring Programme 64 1. Overview This has been another excellent year for the Heilbronn Institute, which is now firmly established as a major national mathematical research centre. HIMR has developed a strong brand and is increasingly influential in the UK mathematics community. There is currently an outstanding cohort of Heilbronn Research Fellows doing first-rate research. Recruitment of new Fellows has been most encouraging, as is the fact that many distinguished academic mathematicians continue to work with the Institute. The research culture at HIMR is excellent. Members have expressed a high level of satisfaction. This is especially the case with the Fellows, many of whom have chosen to continue their relationships with the Institute. Our new Fellows come from leading mathematics departments and have excellent academic credentials. Those who left have moved to high-profile groups, including several to permanent academic positions. We currently have 29 Fellows, hosted by 6 universities. We are encouraged by the fact that of the 9 Fellows joining us this year, 5 are women. The achievements of our Fellows this year again range from winning prestigious prizes to publishing in the elite mathematical journals and organising major mathematical meetings. -
Henri Darmon
Henri Darmon Address: Dept of Math, McGill University, Burnside Hall, Montreal, PQ. E-mail: [email protected] Web Page: http://www.math.mcgill.ca/darmon Telephone: Work (514) 398-2263 Home: (514) 481-0174 Born: Oct. 22, 1965, in Paris, France. Citizenship: Canadian, French, and Swiss. Education: 1987. B.Sc. Mathematics and Computer Science, McGill University. 1991. Ph.D. Mathematics, Harvard University. Thesis: Refined class number formulas for derivatives of L-series. University Positions: 1991-1994. Princeton University, Instructor. 1994-1996. Princeton University, Assistant Professor. 1994-1997. McGill University, Assistant Professor. 1997-2000. McGill University, Associate Professor. 2000- . McGill University, Professor. 2005-2019. James McGill Professor, McGill University. Other positions: 1991-1994. Cercheur hors Qu´ebec, CICMA. 1994- . Chercheur Universitaire, CICMA. 1998- . Director, CICMA (Centre Interuniversitaire en Calcul Math´ematique Alg´ebrique). 1999- . Member, CRM (Centre de Recherches Math´ematiques). 2005-2014. External member, European network in Arithmetic Geometry. Visiting Positions: 1991. IHES, Paris. 1995. Universit´a di Pavia. 1996. Visiting member, MSRI, Berkeley. 1996. Visiting professor and guest lecturer, University of Barcelona. 1997. Visiting Professor, Universit´e Paris VI (Jussieu). 1997. Visitor, Institut Henri Poincar´e. 1998. Visiting Professor and NachDiplom lecturer, ETH, Zuric¨ h. 1999. Visiting professor, Universit`a di Pavia. 2001. Visiting professor, Universit`a di Padova. 2001. Korea Institute for Advanced Study. 2002. Visiting professor, RIMS and Saga University (Japan). 1 2003. Visiting Professor, Universit´e Paris VI, Paris. 2003. Visiting professor, Princeton University. 2004. Visiting Professor, Universit´e Paris VI, Paris. 2006. Visiting Professor, CRM, Barcelona, Spain. 2008. Visiting Professor, Universit´e Paris-Sud (Orsay). -
The Fermat Conjecture
THE FERMAT CONJECTURE by C.J. Mozzochi, Ph.D. Box 1424 Princeton, NJ 08542 860/652-9234 [email protected] Copyright C.J. Mozzochi, Ph.D. - 2011 THE FERMAT CONJECTURE FADE IN: EXT. OXFORD GRAMMAR SCHOOL -- DAY (1963) A ten-year-old ANDREW WILES is running toward the school to talk with his friend, Peter. INT. HALL OF SCHOOL Andrew Wiles excitedly approaches PETER, who is standing in the hall. ANDREW WILES Peter, I want to show you something very exciting. Let’s go into this classroom. INT. CLASSROOM Andrew Wiles writes on the blackboard: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...positive integers. 3, 5, 7, 11, 13...prime numbers. 23 = 2∙ 2∙ 2 35 = 3∙ 3∙ 3∙ 3∙ 3 xn = x∙∙∙x n-terms and explains to Peter the Fermat Conjecture; as he writes on the blackboard. ANDREW WILES The Fermat Conjecture states that the equation xn + yn = zn has no positive integer solutions, if n is an integer greater than 2. Note that 32+42=52 so the conjecture is not true when n=2. The famous French mathematician Pierre Fermat made this conjecture in 1637. See how beautiful and symmetric the equation is! Peter, in a mocking voice, goes to the blackboard and writes on the blackboard: 1963-1637=326. PETER Well, one thing is clear...the conjecture has been unproved for 326 years...you will never prove it! 2. ANDREW WILES Don’t be so sure. I have already shown that it is only necessary to prove it when n is a prime number and, besides, Fermat could not have known too much more about it than I do. -
Arxiv:2005.14365V1 [Math.NT] 29 May 2020
VARIATIONS IN THE DISTRIBUTION OF PRINCIPALLY POLARIZED ABELIAN VARIETIES AMONG ISOGENY CLASSES EVERETT W. HOWE Abstract. We show that for a large class of rings R, the number of principally polarized abelian varieties over a finite field in a given simple ordinary isogeny class and with endomorphism ring R is equal either to 0, or to a ratio of class numbers associated to R, up to some small computable factors. This class of rings includes the maximal order of the CM field K associated to the isogeny class (for which the result was already known), as well as the order R generated over Z by Frobenius and Verschiebung. For this latter order, we can use results of Louboutin to estimate the appropriate ratio of class numbers in terms of the size of the base field and the Frobenius angles of the isogeny class. The error terms in our estimates are quite large, but the trigonometric terms in the estimate are suggestive: Combined with a result of Vl˘adut¸on the distribution of Frobenius angles of isogeny classes, they give a heuristic argument in support of the theorem of Katz and Sarnak on the limiting distribution of the multiset of Frobenius angles for principally polarized abelian varieties of a fixed dimension over finite fields. 1. Introduction In this paper we consider the problem of estimating the number of isomorphism classes of principally polarized abelian varieties (A; λ) such that A lies in a given isogeny class of simple ordinary abelian varieties over a finite field. We approach this problem by subdividing isogeny classes into their strata, which are the subsets of an isogeny class consisting of abelian varieties sharing the same endomorphism ring. -
January 2019 Volume 66 · Issue 01
ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society January 2019 Volume 66, Number 1 The cover art is from the JMM Sampler, page 84. AT THE AMS BOOTH, JMM 2019 ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices of the American Mathematical Society January 2019 Volume 66, Number 1 © Pomona College © Pomona Talk to Erica about the AMS membership magazine, pick up a free Notices travel mug*, and enjoy a piece of cake. facebook.com/amermathsoc @amermathsoc A WORD FROM... Erica Flapan, Notices Editor in Chief I would like to introduce myself as the new Editor in Chief of the Notices and share my plans with readers. The Notices is an interesting and engaging magazine that is read by mathematicians all over the world. As members of the AMS, we should all be proud to have the Notices as our magazine of record. Personally, I have enjoyed reading the Notices for over 30 years, and I appreciate the opportunity that the AMS has given me to shape the magazine for the next three years. I hope that under my leadership even more people will look forward to reading it each month as much as I do. Above all, I would like the focus of the Notices to be on expository articles about pure and applied mathematics broadly defined. I would like the authors, topics, and writing styles of these articles to be diverse in every sense except for their desire to explain the mathematics that they love in a clear and engaging way. -
The André-Oort Conjecture for Ag
Annals of Mathematics 187 (2018), 379{390 The Andr´e-Oortconjecture for Ag By Jacob Tsimerman Abstract We give a proof of the Andr´e-Oortconjecture for Ag | the moduli space of principally polarized abelian varieties. In particular, we show that a recently proven \averaged" version of the Colmez conjecture yields lower bounds for Galois orbits of CM points. The Andr´e-Oortconjecture then follows from previous work of Pila and the author. 1. Introduction Recall the statement of the Andr´e-Oortconjecture: Conjecture 1.1. Let S be a Shimura variety, and let V be an irreducible closed algebraic subvariety of S. Then V contains only finitely many maximal special subvarieties. For the definition of the terms \Shimura variety" and \special subvariety," as well as a brief history of the origins of the conjecture, see [21]. In the past few decades, there has been an enormous amount of work on the Andr´e-Oort conjecture. Notably, a full proof of the conjecture under the assumption of the Generalized Riemann Hypothesis (GRH) for CM fields has been given by Klingler, Ullmo, and Yafaev [11], [21]. Following a strategy introduced by Pila and Zannier, in previous work [16] it was shown that the Andr´e-Oortconjecture for the coarse moduli space of principally polarized abelian varieties Ag follows once one establishes that the sizes of the Galois orbits of special points are \large." This is what we prove in this paper. More specifically, we prove the following: Theorem 1.2. There exists δg > 0 such that if Φ is a primitive CM type for a CM field E, and if A is any g-dimensional polarized abelian variety over Q with endomorphism ring equal to the full ring of integers OE and CM type Φ, Keywords: Andr´e-Oort,Complex Multiplication, Faltings Height, Colmez Conjecture AMS Classification: Primary: 11G15, 11G18. -
Point Counting for Foliations Over Number Fields 3
POINT COUNTING FOR FOLIATIONS OVER NUMBER FIELDS GAL BINYAMINI Abstract. Let M be an affine variety equipped with a foliation, both defined over a number field K. For an algebraic V ⊂ M over K write δV for the maximum of the degree and log-height of V . Write ΣV for the points where the leafs intersect V improperly. Fix a compact subset B of a leaf L. We prove effective bounds on the geometry of the intersection B∩V . In particular when codim V = dim L we prove that #(B ∩ V ) is bounded by a polynomial −1 in δV and log dist (B, ΣV ). Using these bounds we prove a result on the interpolation of algebraic points in images of B ∩ V by an algebraic map Φ. For instance under suitable conditions we show that Φ(B∩V ) contains at most poly(g,h) algebraic points of log-height h and degree g. We deduce several results in Diophantine geometry. i) Following Masser- Zannier, we prove that given a pair of sections P,Q of a non-isotrivial family of squares of elliptic curves that do not satisfy a constant relation, whenever P,Q are simultaneously torsion their order of torsion is bounded effectively by a polynomial in δP , δQ. In particular the set of such simultaneous torsion points is effectively computable in polynomial time. ii) Following Pila, we prove that n given V ⊂ C there is an (ineffective) upper bound, polynomial in δV , for the degrees and discriminants of maximal special subvarieties. In particular it follows that Andr´e-Oort for powers of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel constant). -
CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Fabrice Orgogozo Version
CONSTRUCTIBILITÉ ET MODÉRATION UNIFORMES EN COHOMOLOGIE ÉTALE Fabrice Orgogozo‡ version : 69b422d 2017-03-30 18:28:46 +0200 Résumé. Soient 푆 un schéma nœthérien et 푓 ∶ 푋 → 푆 un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible ℱ de ℤ/푛ℤ-modules sur 푋, 푖 les faisceaux de ℤ/푛ℤ-modules 횁 푓⋆ℱ , obtenus par image directe (pour la to- pologie étale), sont également constructibles : il existe une stratification 픖 de 푆 telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particu- lier où 푆 est génériquement de caractéristique nulle ou bien les faisceaux ℱ sont constants (de torsion inversible sur 푆), on étudie ici la dépendance de 픖 en ℱ . On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les 푖 foncteurs 횁 푓⋆. Si 푓 n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à 푆. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres 푖 ℓ des faisceaux 횁 푓⋆픽ℓ, où parcourt les nombres premiers inversibles sur 푆. Abstract. Let 푆 be a Noetherian scheme and 푓 ∶ 푋 → 푆 a proper morphism. By SGA 4 XIV, for any constructible sheaf ℱ of ℤ/푛ℤ-modules on 푋, the sheaves 푖 of ℤ/푛ℤ-modules 횁 푓⋆ℱ obtained by direct image (for the étale topology) are themselves constructible, that is, there is a stratification 픖 of 푆 on whose strata these sheaves are locally constant constructible. -
2015 SASTRA Ramanujan Prize Awarded to Jacob Tsimerman - 11-19-2015 by Manjil Saikia - Gonit Sora
2015 SASTRA Ramanujan Prize awarded to Jacob Tsimerman - 11-19-2015 by Manjil Saikia - Gonit Sora - http://gonitsora.com 2015 SASTRA Ramanujan Prize awarded to Jacob Tsimerman by Manjil Saikia - Thursday, November 19, 2015 http://gonitsora.com/2015-sastra-raacob-tsimerman/ The 2015 SASTRA Ramanujan Prize has been awarded to Jacob Tsimerman of the University of Toronto, Candan. The official prize announcement can be found here. The prize is awarded every year since 2005 to a young mathematician under the age of 32 in areas which are influenced by the work of Ramanujan. Previous winners include Terence Tao, Manjul Bhargava, James Maynard, etc. Tsimerman has made deep and highly original contributions to diverse parts of number theory, and most notably to the famous Andre-Oort Conjecture. More information about his research can be found here. Jacob Tsimerman was born in Kazan, Russia on April 26, 1988. In 1990 his family first moved to Israel and then in 1996 to Canada, where he participated in various mathematical competitions from the age of 9. In 2003 and 2004 he represented Canada in the International Mathematical Olympiad (IMO) and won gold medals both years, with a perfect score in 2004. During 2004-06, in just two years, he finished his Bachelors degree courses in Toronto. During 2006-11, he was a doctoral student at Princeton under the supervision of Professor Peter Sarnak; there he was supported by an American Mathematical Society (AMS) Centennial Fellowship. Following his PhD, he had a post-doctoral position at Harvard University as a Junior Fellow of the Harvard Society of Fellows. -
MIT Undergraduate Math Association Magazine
MIT Undergraduate Math Association Magazine Fall 2013 A Note from the UMA President The MIT Undergraduate Math Association is pleased to bring you our Fall 2013 issue of the UMA Magazine! The UMA has published a magazine for the math community at MIT pe- riodically for over 25 years. Now, after a short hiatus, we are The UMA Magazine writing and editing team resuming the tradition. In the Spring, we held a survey to gauge your opinions about The UMA officers: President Josh Alman, Vice President life as a math major at MIT and interests for our magazine. Mitchell Lee, Treasurer Leon Zhou, and Secretary Felipe This issue contains everything you asked for, and more: Hernandez. • Four articles by current MIT undergraduates about math Holden Lee, last year’s Vice President, who continued to that we find interesting. help us despite having graduated. • An interview with Professor Andrew Sutherland, focus- ing on his work and the recent progress toward the Twin Soohyun Park from USWIM, who helped to organize our Prime Conjecture. math articles. • Interviews with mathematics students who graduated Ping Ngai Chung who contributed an article. from MIT and are pursuing various fields of study. Our staff advisor Prof. Ju-Lee Kim. • The more interesting results from our survey. Special thanks to Prof. Andrew Sutherland, Leonid Chin- • Some mathematical nuggets and jokes. delevitch, Delong Meng, and David B. Rush for being in- We hope that you find the content useful and interesting! terviewed for this magazine. An online version is available at the UMA website http:// web.mit.edu/uma/www/, which will also include unabridged copies of our four interviews. -
The SASTRA Ramanujan Prize — Its Origins and Its Winners
Asia Pacific Mathematics Newsletter 1 The SastraThe SASTRA Ramanujan Ramanujan Prize — Its Prize Origins — Its Originsand Its Winnersand Its ∗Winners Krishnaswami Alladi Krishnaswami Alladi The SASTRA Ramanujan Prize is a $10,000 an- many events and programs were held regularly nual award given to mathematicians not exceed- in Ramanujan’s memory, including the grand ing the age of 32 for path-breaking contributions Ramanujan Centenary celebrations in December in areas influenced by the Indian mathemati- 1987, nothing was done for the renovation of this cal genius Srinivasa Ramanujan. The prize has historic home. One of the most significant devel- been unusually effective in recognizing extremely opments in the worldwide effort to preserve and gifted mathematicians at an early stage in their honor the legacy of Ramanujan is the purchase in careers, who have gone on to accomplish even 2003 of Ramanujan’s home in Kumbakonam by greater things in mathematics and be awarded SASTRA University to maintain it as a museum. prizes with hallowed traditions such as the Fields This purchase had far reaching consequences be- Medal. This is due to the enthusiastic support cause it led to the involvement of a university from leading mathematicians around the world in the preservation of Ramanujan’s legacy for and the calibre of the winners. The age limit of 32 posterity. is because Ramanujan lived only for 32 years, and The Shanmugha Arts, Science, Technology and in that brief life span made revolutionary contri- Research Academy (SASTRA), is a private uni- butions; so the challenge for the prize candidates versity in the town of Tanjore after which the is to show what they have achieved in that same district is named.