Jean-Marc Fontaine (1944–2019) Pierre Berthelot, Luc Illusie, Nicholas M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distributions:The Evolutionof a Mathematicaltheory
Historia Mathematics 10 (1983) 149-183 DISTRIBUTIONS:THE EVOLUTIONOF A MATHEMATICALTHEORY BY JOHN SYNOWIEC INDIANA UNIVERSITY NORTHWEST, GARY, INDIANA 46408 SUMMARIES The theory of distributions, or generalized func- tions, evolved from various concepts of generalized solutions of partial differential equations and gener- alized differentiation. Some of the principal steps in this evolution are described in this paper. La thgorie des distributions, ou des fonctions g&&alis~es, s'est d&eloppeg 2 partir de divers con- cepts de solutions g&&alis6es d'gquations aux d&i- &es partielles et de diffgrentiation g&&alis6e. Quelques-unes des principales &apes de cette &olution sont d&rites dans cet article. Die Theorie der Distributionen oder verallgemein- erten Funktionen entwickelte sich aus verschiedenen Begriffen von verallgemeinerten Lasungen der partiellen Differentialgleichungen und der verallgemeinerten Ableitungen. In diesem Artikel werden einige der wesentlichen Schritte dieser Entwicklung beschrieben. 1. INTRODUCTION The founder of the theory of distributions is rightly con- sidered to be Laurent Schwartz. Not only did he write the first systematic paper on the subject [Schwartz 19451, which, along with another paper [1947-19481, already contained most of the basic ideas, but he also wrote expository papers on distributions for electrical engineers [19481. Furthermore, he lectured effec- tively on his work, for example, at the Canadian Mathematical Congress [1949]. He showed how to apply distributions to partial differential equations [19SObl and wrote the first general trea- tise on the subject [19SOa, 19511. Recognition of his contri- butions came in 1950 when he was awarded the Fields' Medal at the International Congress of Mathematicians, and in his accep- tance address to the congress Schwartz took the opportunity to announce his celebrated "kernel theorem" [195Oc]. -
Marco D'addezio
Marco D’Addezio Max Planck Institute for Mathematics Vivatsgasse 7 Office 221 53111 Bonn, Germany email: [email protected] url: https://guests.mpim-bonn.mpg.de/daddezio Born: January 07, 1992—Rome, Italy Nationality: Italian Current position 2019-2021 Postdoctoral Fellow, Max Planck Institute for Mathematics, Bonn, Germany; Mentor: Prof. Peter Scholze. Previous position 2019 Postdoctoral Fellow, Free University Berlin, Germany; Mentor: Dr. Simon Pepin Lehalleur; Project title: Overconvergent F -isocrystals and rational points. Areas of specialization Algebraic Geometry, Number Theory. Education 2016-2019 Ph.D. in Mathematics, Free University Berlin, Germany; Supervisors: Prof. Hélène Esnault and Prof. Vasudevan Srinivas; Thesis title: Monodromy groups in positive characteristic. 2015-2016 Master 2 - Analyse, Arithmétique et Géométrie, University Paris Sud, France. 2014-2015 Master 1 - Mathematiques Fondamentales et Appliquées, University Paris Sud, France. 2011-2014 Bachelor in Mathematics, University of Pisa, Italy. Grants & awards 2020 Ernst Reuter Prize for the PhD thesis. 2019-2021 Max Planck Institute for Mathematics Postdoctoral Fellowship. 1 2019 German Research Foundation Postdoctoral Fellowship. 2016-2019 Einstein Foundation Fellowship. 2014-2016 Paris Saclay Scholarship. 2011-2014 Istituto Nazionale di Alta Matematica Scholarship. Articles & talks Accepted articles 2021 M. D’Addezio, H. Esnault, On the universal extensions in Tannakian categories, arXiv: 2009.14170, to appear in Int. Math. Res. Not. 2021 M. D’Addezio, On the semi-simplicity conjecture for Qab, arXiv:1805.11071, to appear in Math. Res. Lett. 2020 M. D’Addezio, The monodromy groups of lisse sheaves and overconvergent F -isocrystals, Sel. Math. (New Ser.) 26 (2020). Preprints 2021 M. D’Addezio, Slopes of F-isocrystals over abelian varieties, https://arxiv.org/abs/2101. -
An Important Visitor in Vancouver and Ottawa
PERSPECTIVES An important visitor in Vancouver and Ottawa Federal research minister Anja Karliczek visits German-Canadian cooperation projects of the Max Planck Society Interested in quantum technology: Federal Research Minister, Anja Karliczek, learned about the Max Planck Center in Vancouver from Max Planck Director Bernhard Keimer (left) and his Canadian colleague Andrea Damascelli. Committee on Education, Research, and Technology Assessment. In Van- couver, the delegation gained insights into research projects at the Max Planck- UBC-U Tokyo Center for Quantum Materials. The Center is home to a close collaboration between several Max Planck Institutes, the University of British Columbia in Vancouver and the University of Tokyo. Two of its Co- Directors, Bernhard Keimer of the Max Planck Institute for Solid State Research and his Canadian colleague Andrea Damascelli, presented the minister with an overview of initial successes that have emerged from collaboration in the area of high-temperature superconduc- tors. On the visit to the Max Planck Uni- versity of Ottawa Centre for Extreme As part of a trip to Canada, the German make key contributions to the explo- and Quantum Photonics, researchers Federal Minister for Education and Re- ration of quantum technologies and explained to the delegation how they search, Anja Karliczek, also paid a visit the international exchange of scien- are developing high-intensity laser to the Max Planck Centers in Vancouver tists,” said the minister, who was accom- sources with a view to optimizing man- and Ottawa. “The Max Planck Centers panied by members of the Bundestag ufacturing processes in the future. Fields Medal for Peter Scholze The new Director at the Max Planck Institute for Mathematics is awarded the highest distinction in his field The Fields Medal is considered the Nobel Prize of mathematics, Exceptional talent: Peter Scholze, and this year the International Mathematical Union chose to a professor at the University of Bonn and Director at the Max Planck award it to Peter Scholze. -
Motives, Volume 55.2
http://dx.doi.org/10.1090/pspum/055.2 Recent Titles in This Series 55 Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert £. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Areata conference on representations of finite groups (Humboldt State University, Areata, California, July 1986) 46 Spencer J. Bloch, editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985) 45 Felix E. Browder, editor, Nonlinear functional analysis and its applications (University of California, Berkeley, July 1983) 44 William K. Allard and Frederick J. Almgren, Jr., editors, Geometric measure theory and the calculus of variations (Humboldt State University, Areata, California, July/August 1984) 43 Francois Treves, editor, Pseudodifferential operators and applications (University of Notre Dame, Notre Dame, Indiana, April 1984) 42 Anil Nerode and Richard A. -
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
The Work of Pierre Deligne
THE WORK OF PIERRE DELIGNE W.T. GOWERS 1. Introduction Pierre Deligne is indisputably one of the world's greatest mathematicians. He has re- ceived many major awards, including the Fields Medal in 1978, the Crafoord Prize in 1988, the Balzan Prize in 2004, and the Wolf Prize in 2008. While one never knows who will win the Abel Prize in any given year, it was virtually inevitable that Deligne would win it in due course, so today's announcement is about as small a surprise as such announcements can be. This is the third time I have been asked to present to a general audience the work of the winner of the Abel Prize, and my assignment this year is by some way the most difficult of the three. Two years ago, I talked about John Milnor, whose work in geometry could be illustrated by several pictures. Last year, the winner was Endre Szemer´edi,who has solved several problems with statements that are relatively simple to explain (even if the proofs were very hard). But Deligne's work, though it certainly has geometrical aspects, is not geometrical in a sense that lends itself to pictorial explanations, and the statements of his results are far from elementary. So I am forced to be somewhat impressionistic in my description of his work and to spend most of my time discussing the background to it rather than the work itself. 2. The Ramanujan conjecture One of the results that Deligne is famous for is solving a conjecture of Ramanujan. This conjecture is not the obvious logical starting point for an account of Deligne's work, but its solution is the most concrete of his major results and therefore the easiest to explain. -
Peter Scholze Awarded the Fields Medal
Peter Scholze awarded the Fields medal Ulrich Görtz Bonn, October 1, 2018 . Most important research prize in mathematics John Charles Fields Since 1936, 59 medals awarded. Age limit: 40 years . Most important research prize in mathematics . Most important research prize in mathematics . Most important research prize in mathematics . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk mod p fields, Archimedean e. g. Fp((t)) fields, e. g. R, C p-adic fields, e. g. Qp Algebraic number fields, e. g. Q . Do solutions exist? Are there only finitely many solutions? Can we count them? Can we write them down explicitly? If there are infinitely many solutions, does the set of solutions have a (geometric) structure? Solving equations Important problem in mathematics: Understand set of solutions of an equation. Solving equations Important problem in mathematics: Understand set of solutions of an equation. Do solutions exist? Are there only finitely many solutions? Can we count them? Can we write them down explicitly? If there are infinitely many solutions, does the set of solutions have a (geometric) structure? . -
Laurent Schwartz (1915–2002), Volume 50, Number 9
Laurent Schwartz (1915–2002) François Treves, Gilles Pisier, and Marc Yor classics scholar and that of a mathematician. He had won the Concours Général in Latin; the Con- Biographical cours Général was and still is the most prestigious nationwide competition in France for high school- Sketch ers. Meanwhile he had become fascinated by the beauty of geometry, and, in the end, with the en- François Treves couragement of one of his professors in classics and of his uncle, the pediatrician Robert Debré, and Laurent Schwartz died in Paris on the 4th of July despite the rather unhelpful attitude of Hadamard, 2002. He was born in Paris on March 5, 1915. His dismayed that the sixteen-year-old Laurent was father, Anselme Schwartz, had been born in 1872 not acquainted with the Riemann zeta function, he in a small Alsatian town soon after the annexation of Alsatia by Germany. A fervent patriot, Anselme tried for admission to the science classes of the Schwartz had emigrated to France at the age of four- École Normale Supérieure (ENS), the most selective teen (before speaking French). In Paris he man- and most scholarly oriented of the “Grandes aged to carry out successful studies in medicine and Écoles”. He underwent the rather grueling two-year was to become a prominent surgeon in France in training (“hypotaupe”, followed by “taupe”, the the years between the two world wars. In 1907, tunnelling “submole” and “mole” years, so to speak) having just become the first Jewish surgeon ever preparatory to entrance to the ENS, where he was officially employed in a Paris hospital, Anselme admitted in 1934. -
Linking Together Members of the Mathematical Carlos Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P. -
Combinatorics of Square-Tiled Surfaces and Geometry of Moduli Spaces
COMBINATORICS OF SQUARE-TILED SURFACES AND GEOMETRY OF MODULI SPACES VINCENT DELECROIX, QUENTIN GENDRON, AND CARLOS MATHEUS Abstract. This text corresponds to the lecture notes of a minicourse delivered from August 16 to 20, 2021 at the IMPA{ICTP online summer school \Aritm´etica,Grupos y An´alisis(AGRA) IV". In particular, we discuss the same topics from our minicourse, namely, the basic theory of origamis and its connections to the calculation of Masur{Veech volumes of moduli spaces of translation surfaces. Contents 1. Square-tiled surfaces, Veech groups and arithmetic Teichm¨ullercurves 2 1.1. Basic definitions and some examples 2 1.2. Action of SL(2; Z) and Veech groups 4 1.3. Arithmetic Teichm¨ullercurves 5 1.4. Exercises 5 2. Some properties of Veech groups 7 2.1. Characteristic origamis 7 2.2. Origamis with prescribed Veech groups 8 2.3. Non-congruence Veech groups within H(2) 8 2.4. Exercises 10 3. Translation surfaces, moduli spaces and Masur{Veech volumes 11 3.1. Translation surfaces and GL(2; R)-action 11 3.2. Strata of translation surfaces 11 3.3. Masur-Veech volume and enumeration of square-tiled surfaces 12 3.4. Reduced versus non-reduced origamis 12 3.5. The Masur-Veech volume of H(2) 13 3.6. Further readings 15 4. Enumeration of square-tiled surfaces via quasi-modular forms 17 4.1. Frobenius formula and the generating function of square-tiled surfaces 17 4.2. Bloch-Okounkov and Kerov-Olshanski theorems 17 4.3. Computations 17 5. Classification of SL(2; Z)-orbits of origamis 18 Date: August 17, 2021. -
Annual Report 2017-2018
Annual Review 2017 | 2018 ONTENTS C 1 Overview 1 2 Profile 4 3 Research 6 4 Events 9 5 Personnel 13 6 Mentoring 17 7 Structures 18 APPENDICES R1 Highlighted Papers 20 R2 Complete List of Papers 23 E1 HIMR-run Events 29 E2 HIMR-sponsored Events 31 E3 Focused Research Events 39 E4 Future Events 54 P1 Fellows Joining in 2017|2018 59 P2 Fellows Leaving since September 2017 60 P3 Fellows Moving with 3-year Extensions 62 P4 Future Fellows 63 M1 Mentoring Programme 64 1. Overview This has been another excellent year for the Heilbronn Institute, which is now firmly established as a major national mathematical research centre. HIMR has developed a strong brand and is increasingly influential in the UK mathematics community. There is currently an outstanding cohort of Heilbronn Research Fellows doing first-rate research. Recruitment of new Fellows has been most encouraging, as is the fact that many distinguished academic mathematicians continue to work with the Institute. The research culture at HIMR is excellent. Members have expressed a high level of satisfaction. This is especially the case with the Fellows, many of whom have chosen to continue their relationships with the Institute. Our new Fellows come from leading mathematics departments and have excellent academic credentials. Those who left have moved to high-profile groups, including several to permanent academic positions. We currently have 29 Fellows, hosted by 6 universities. We are encouraged by the fact that of the 9 Fellows joining us this year, 5 are women. The achievements of our Fellows this year again range from winning prestigious prizes to publishing in the elite mathematical journals and organising major mathematical meetings. -
Arxiv:1711.06456V4 [Math.AG] 1 Dec 2018
PURITY FOR THE BRAUER GROUP KĘSTUTIS ČESNAVIČIUS Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the Brauer group of a regular scheme does not change after removing a closed subscheme of codimension ě 2. The combination of several works of Gabber settles the conjecture except for some cases that concern p-torsion Brauer classes in mixed characteristic p0,pq. We establish the remaining cases by using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover. 1. The purity conjecture of Grothendieck and Auslander–Goldman .............. 1 Acknowledgements ................................... ................................ 3 2. Passage to a finite flat cover ................................................... .... 3 3. Passage to the completion ................................................... ....... 6 4. The p-primary Brauer group in the perfectoid case .............................. 7 5. Passage to perfect or perfectoid towers ........................................... 11 6. Global conclusions ................................................... ............... 13 Appendix A. Fields of dimension ď 1 ................................................ 15 References ................................................... ........................... 16 1. The purity conjecture of Grothendieck and Auslander–Goldman Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X is insensitive to removing a closed subscheme Z Ă X of codimension ě 2. This purity conjecture is known in many cases (as we discuss in detail below), for instance, for cohomology classes of order 2 invertible on X, and its codimension requirement is necessary: the Brauer group of AC does not agree with that of the complement of the coordinate axes (see [DF84, Rem. 3]). In this paper, we finish the remaining cases, that is, we complete the proof of the following theorem.