Effect of DNA Polymerase I and DNA Helicase II on the Turnover Rate Of

Total Page:16

File Type:pdf, Size:1020Kb

Effect of DNA Polymerase I and DNA Helicase II on the Turnover Rate Of Proc. Natl. Acad. Sci. USA Vol. 82, pp. 6774-6778, October 1985 Biochemistry Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease (UvrA, -B, -C, -D proteins/pyrimidine dimers/cisplatin) INTISAR HUSAIN*, BENNETT VAN HOUTEN*, DAVID C. THOMAS*, MAHMOUD ABDEL-MONEMt, AND AZIZ SANCAR* *University of North Carolina, School of Medicine, Department of Biochemistry, Chapel Hill, NC 27514; and tMax-Planck-Institut fur Medizinische Forschung, Abteilung Molekulare Biologie, Heidelberg, Federal Republic of Germany Communicated by Mary Ellen Jones, June 20, 1985 ABSTRACT UvrABC excision nuclease (UvrA, UvrB, and is in reasonable agreement with the 0.12-0.50 min-1 that can UvrC proteins) of Escherichia coli removes nucleotide mono- be calculated from the in vivo data published by several and diadducts from DNA in the form of oligonucleotides 12 or workers (5, 13-15). 13 bases long. We find that the purified enzyme dissociates from DNA very slowly, if at all, in the absence ofother proteins MATERIALS AND METHODS implicated in excision repair. Addition of DNA polymerase I and helicase II (UvrD protein) to the reaction mixture stimu- Enzymes. The UvrA, UvrB, and UvrC subunits of lates the turnover rate of the excision nuclease to a level UvrABC excision nuclease were purified separately as de- comparable to that observed in vivo. scribed previously (1, 16). The UvrD protein (DNA helicase II) was purified according to the original protocol of Abdel- The Escherichia coli UvrABC excision nuclease is an ATP- Monem et al. (17) using as a starting material a strain carrying dependent DNA repair enzyme that removes oligomers the uvrD gene on a multicopy plasmid (18). The detail of this containing modified nucleotides. The enzyme is made up of purification procedure will be published elsewhere. The pol three subunits, UvrA (Mr, 103,749), UvrB (Mr, 84,000), and I (nuclease free) and the Klenow fragment were obtained UvrC (Mr, 66,038). The three proteins acting in concert from Boehringer Mannheim, and E. coli DNA ligase and T4 hydrolyze the eighth phosphodiester bond 5' and the fourth DNA polymerase from New England Biolabs. The E. coli or fifth phosphodiester bond 3' to the damaged nucleotide(s) Rep protein was kindly supplied to us by J. Hurwitz and G. (1). It has been reported that uninduced wild-type E. coli cells Goetz; T4 DNA ligase was a gift from J. Griffith. Polyclonal contain about 20 molecules of UvrA (2), 140 molecules of antibodies against DNA helicase II were prepared by stan- UvrB (3), and 10 molecules of UvrC (4). While these dard methods; they were nuclease free and did not cross react estimates were based on indirect measurements, it is unlikely with any of the proteins used in our reconstruction studies. that there would be more than 100 enzyme complexes per All of the proteins used in our work were greater than 95% cell, which poses an interesting dilemma with regard to pure as judged by analysis on Coomassie blue-stained excision repair. It is well established that following UV NaDodSO4/polyacrylamide gels. Protein concentrations irradiation E. coli cells remove several thousand pyrimidine were determined by the Bradford assay. dimers when held in buffer (see ref. 5), yet recent experi- Substrates. Radiolabeled or unlabeled pBR322 DNA was ments with purified enzyme suggest that the enzyme may not prepared by standard methods and superhelical DNA was turn over-i.e., dissociate from the DNA (6). It is, therefore, purified through two successive ethidium bromide/CsCl den- expected that additional factors stimulate the turnover rate of sity gradient centrifugations (19). The tritiated DNA used in the the enzyme in vivo. Two likely candidates are E. coli DNA incision and filter binding assays had a specific activity of 1.5 x polymerase I (pol I) and DNA helicase II (UvrD protein) 105 cpm/,ug. The substrate for these assays was prepared by because extensive in vivo data indicate that these two irradiating the DNA with 254-nm UV light that produced 10 proteins are involved in excision repair (7-10). Moreover, it lethal hits per molecule as measured by the transformation has been found that UvrD protein stimulates UvrABC assay (19). The DNA used for the incision and filter binding excision nuclease in cell-free extracts (11) or partially purified assays contained 70-75% superhelical molecules. The substrate excision nuclease preparations (12). However, it was not for the excision assay was prepared as described (20). clear these studies whether UvrD stimulated Assays. The activity and turnover rate ofUvrABC excision from protein the nuclease were measured by three separate assays: incision, rate of excision nuclease-DNA complex formation or the excision, and filter binding. All the assays were conducted in turnover rate of the enzyme. a nucleotide-excision-repawr buffer which contained 50 mM In this communication using proteins purified to near Tris-HCI, pH 7.4/50 mM KCl/10 mM MgCl2/2 mM ATP/33 homogeneity we demonstrate that helicase II alone has no ,uM each of dATP, dGTP, dTTP, and dCTP/10 mM dithio- effect on the initial rate ofexcision nuclease activity and only threitol/10% glycerol (vol/vol)/bovine serum albumin at 50 a small effect on its turnover. Similarly we find that pol I ,g/ml plus DNA and repair proteins at the amounts indicated. alone does not stimulate the ABC excision nuclease. How- The incision assay measures the conversion of superhelical ever, the combination of the two causes the enzyme to turn DNA to open circles and has been described elsewhere (19). over such that in a complete excision repair system (UvrABC The excision assay measures the removal of radioactive excision nuclease, helicase II, pol I, DNA ligase) the rate of adducts [in this case cis-1,2-diamino[4,5-3H]cyclohexanedi- the removal of nucleotide adducts approaches 0.08 adduct chloroplatinum(II) ([3H]cisplatin) adduct] from an otherwise per UvrABC excision nuclease complex per min. This value unlabeled DNA and has been described in detail (20). The filter binding assay is the classical nitrocellulose filter binding The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: cisplatin, cis-1,2-diamino[4,5-3H]cyclohexanedichlo- in accordance with 18 U.S.C. §1734 solely to indicate this fact. roplatinum(II); pol I, E. coli DNA polymerase I. 6774 Downloaded by guest on October 1, 2021 Biochemistry: Husain et al. Proc. Natl. Acad. Sci. USA 82 (1985) 6775 assay adapted to the UvrABC excision nuclease complex .- -1 -- ~~~~~----- - 14 A (21). Since both UvrA and UvrC proteins bind to DNA in the -i- S ... .*- A - C, _ i4.- r ~ ~ 0c absence ofcomplex formation, there is a background that can I,_ ' *. 02- . be eliminated by removing uncomplexed UvrA and UvrC -4 -- wZ"0 ..% I IC. proteins with short incubation (5 min) with an excess of MI unlabeled UV-irradiated DNA. We have established that UvrABC excision nuclease-DNA complexes have consider- ably longer half-lives than either UvrA-DNA or UvrC-DNA complexes. The UvrA and UvrC molecules that are not in the -7 ,Iw. excision nuclease complex therefore bind the excess c unlabeled DNA before filtering and do not bind the labeled I DNA to the filter. Thus, under these experimental conditions the amount of radioactive DNA retained on the filters is a measure ofthe amount ofexcision nuclease-DNA complexes plus UvrAB-DNA complexes present at the time offiltration. 2-(IC C~r _-x ~~_ _ ---_ U* RESULTS Cf1 )4~~~~~~~. A Defimed in Vitro System for Excision Repair. The current 2 model for nucleotide excision repair in E. coli involves the 4.~~~~0. excision of a 12- or 13-base-long oligonucleotide by UvrABC 0042I excision nuclease and dissociation of the DNA-protein complex, filling in the gap by polI and sealing it by ligase (1). 026 However, both in vivo (8-10) and in vitro (11, 12) data 42 4 indicate that the UvrD gene product (18, 22-24), helicase II (17), is also involved in dimer removal. Therefore, for total reconstitution of excision repair in vitro and definition of the functions and interactions of all components, it is necessary to purify all the potential excision repair proteins and study the effects ofeach individually and in combinations. We have obtained the E. coli excision repair proteins in nearly homo- geneous form and utilized them in our reconstitution exper- iments. In Fig. 1 we present a NaDodSO4/polyacrylamide gel TIMEfE in) of the proteins used in our study. This gel contains all of the "/= E. coli proteins presumed to be necessary for excision repair FIG. 2. Effects of pol I and helicase II on UvrABC excision with the exception of DNA ligase. In our studies we used T4 nuclease as measured by the incision assay. (Left) Reaction kinetics. (Right) Photographs of the agarose gels from which the data for the DNA ligase instead ofE. coli DNA ligase because the former graphs in the left panel was obtained. (A) Incision by UvrABC enzyme was made available to us in large quantities. How- excision nuclease. (B) Incision by UvrABC excision nuclease plus ever, we have carried out some of the critical experiments pol I. (C) Incision by UvrABC excision nuclease plus DNA helicase reported in this study with both enzymes and have obtained II. (D) Incision by UvrABC excision nuclease in the presence of pol essentially the same results; therefore, the conclusions we I plus helicase II. Ligase was present in the reactions B-D. The inset draw from our experiments with T4 ligase should be valid for in D shows the initial part of the reactions of A and D in a more excision repair in E.
Recommended publications
  • Copyright by Young-Sam Lee 2010
    Copyright by Young-Sam Lee 2010 The Dissertation Committee for Young-Sam Lee Certifies that this is the approved version of the following dissertation: Structural and Functional Studies of the Human Mitochondrial DNA Polymerase Committee: Whitney Yin, Supervisor Ian Molineux Kenneth Johnson Tanya Paull Jon Robertus Structural and Functional Studies of the Human Mitochondrial DNA Polymerase by Young-Sam Lee, B.S, M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2010 Dedication For my wife, In-Sook Jung. Acknowledgements I would like to appreciate Dr. Whitney Yin for giving me chance to working in her lab and mentoring me through my graduate program. Not only the scientific insights, also the warmness that she gave me and my family encouraged me to pursue my Ph. D. degree in the foreign country. I also would like to thank “a guru of molecular biology” Dr. Ian Molineux and “a guru of enzyme kinetics” Dr. Kenneth Johnson. Without their critical advice, I would not be accomplished my publication. I hope to be a respectable expert in my research field like them. I also should remember friendship and generosity given by many current and former Yin lab members: Hey-Ryung Chang, Qingchao “Eric” Meng, Xu Yang, Jeff Knight, Dr. Michio Matsunaga, Dr. He “River” Quan, Taewung Lee, Xin “Ella” Wang, Jamila Momand, and Max Shay. Most of all, I really appreciate my parents for their endless love and support, and my wife, In-Sook Jung, and my son, Jason Seung-Hyeon Lee who always stand by me with patients during my graduate carrier.
    [Show full text]
  • PURIFIED THERMOSTABLE NUCLEIC ACID POLYMERASE ENZYME from $I(TERMOTOGA MARITIMA)
    Europäisches Patentamt *EP000544789B1* (19) European Patent Office Office européen des brevets (11) EP 0 544 789 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 15/54, C12N 9/12 of the grant of the patent: 05.03.2003 Bulletin 2003/10 (86) International application number: PCT/US91/05753 (21) Application number: 91915802.2 (87) International publication number: (22) Date of filing: 13.08.1991 WO 92/003556 (05.03.1992 Gazette 1992/06) (54) PURIFIED THERMOSTABLE NUCLEIC ACID POLYMERASE ENZYME FROM $i(TERMOTOGA MARITIMA) GEREINIGTES THERMOSTABILES NUKLEINSÄURE-POLYMERASEENZYM AUS THERMOTOGA MARITIMA ENZYME D’ACIDE NUCLEIQUE THERMOSTABLE PURIFIEE PROVENANT DE L’EUBACTERIE $i(THERMOTOGA MARITIMA) (84) Designated Contracting States: (74) Representative: Poredda, Andreas et al AT BE CH DE DK ES FR GB GR IT LI LU NL SE Roche Diagnostics GmbH, Patentabteilung, (30) Priority: 13.08.1990 US 567244 Sandhofer Strasse 116 68305 Mannheim (DE) (43) Date of publication of application: 09.06.1993 Bulletin 1993/23 (56) References cited: • CHEMICAL ABSTRACTS, vol. 105, no. 5, 04 (73) Proprietor: F. HOFFMANN-LA ROCHE AG August 1986, Columbus, OH (US); R. HUBER et 4002 Basel (CH) al., p. 386, AN 38901u • JOURNAL OF BIOLOGICAL CHEMISTRY, vol. (72) Inventors: 264, no. 11, 15 April 1989, American Society for • GELFAND, David, H. Biochemistry & Molecular Biology Inc., Oakland, CA 94611 (US) Baltimore, MD (US); F.C. LAWYER et al., pp. • LAWYER, Frances, C. 6427-6437 Oakland, CA 94611 (US) • STOFFEL, Susanne El Cerrito, CA 94530 (US) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Glucokinase Regulatory Protein Is Essential for the Proper Subcellular Localisation of Liver Glucokinase
    FEBS Letters 456 (1999) 332^338 FEBS 22420 Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase Nu¨ria de la Iglesiaa, Maria Veiga-da-Cunhab, Emile Van Schaftingenb, Joan J. Guinovarta, Juan C. Ferrera;* aDepartament de Bioqu|¨mica i Biologia Molecular, Universitat de Barcelona, Mart|¨ i Franque©s, 1, E-08028 Barcelona, Spain bLaboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Universite¨ Catholique de Louvain, B-1200 Brussels, Belgium Received in revised form 24 June 1999 pressed by fructose 1-phosphate, both of which bind to Abstract Glucokinase (GK), a key enzyme in the glucose homeostatic responses of the liver, changes its intracellular GKRP and modify its a¤nity for GK [4]. This 68 kDa protein localisation depending on the metabolic status of the cell. Rat is only found in the livers of species that express GK and liver GK and Xenopus laevis GK, fused to the green fluorescent although there is some evidence for its presence in pancreatic protein (GFP), concentrated in the nucleus of cultured rat tissue [5,6], a direct demonstration is still not available. hepatocytes at low glucose and translocated to the cytoplasm at In in vitro assays, rat GKRP can inhibit human pancreatic high glucose. Three mutant forms of Xenopus GK with reduced GK, which shows a high degree of identity to the rat liver affinity for GK regulatory protein (GKRP) did not concentrate isoform [7], as well as Xenopus laevis liver GK [8], a more in the hepatocyte nuclei, even at low glucose. In COS-1 and distantly related protein.
    [Show full text]
  • Arthur Kornberg Discovered (The First) DNA Polymerase Four
    Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E.
    [Show full text]
  • T5 DNA Polymerase: Structural-Functional Relationships to Other DNA Polymerases (DNA Polymerase I/Proofreading/Processivity/Evolution) MARK C
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 4465-4469, June 1989 Biochemistry T5 DNA polymerase: Structural-functional relationships to other DNA polymerases (DNA polymerase I/proofreading/processivity/evolution) MARK C. LEAVITT AND JUNETSU ITO Department of Microbiology and Immunology, University of Arizona Health Sciences Center, Tucson, AZ 85724 Communicated by Lester 0. Krampitz, April 10, 1989 (receivedfor review February 1, 1989) ABSTRACT T5 DNA polymerase, a highly processive sin- proceed through double-stranded regions in template sec- gle-polypeptide enzyme, has been analyzed for its primary ondary structures or supercoiled plasmid templates. structural features. The amino acid sequence of T5 DNA We present here the DNA sequence of the T5 DNA polymerase has a high degree of homology with that of DNA polymerase gene* and the deduced amino acid sequence ofits polymerase I from Escherichia coli and retains many of the product. Comparisons of the primary structure of this en- amino acid residues that have been implicated in the 3' -* 5' zyme with other DNA polymerases suggest differences that exonuclease and DNA polymerase activities of that enzyme. may account for the high processivity of this enzyme. We Alignment with sequences of polymerase I and T7 DNA poly- also demonstrate the conservation of residues thought to be merase was used to identify regions possibly involved in the intimately involved in 3' -* 5' exonuclease and polymerase high processivity of this enzyme. Further, amino acid sequence activities. Finally, two amino acid sequence segments, which comparisons ofT5 DNA polymerase with a large group ofDNA may be involved in the 3' -*5' exonuclease function of these polymerases previously shown to exhibit little similarity to enzymes, appear to be highly conserved among a wide polymerase I indicate certain sequence segments are shared variety of DNA polymerases.
    [Show full text]
  • Reverse Transcriptase Activity Innate to DNA Polymerase I and DNA
    Reverse transcriptase activity innate to DNA SEE COMMENTARY polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex Kai Bao*† and Stanley N. Cohen*‡§ Departments of *Genetics and ‡Medicine, Stanford University School of Medicine, Stanford, CA 94305-5120 Edited by Nicholas R. Cozzarelli, University of California, Berkeley, CA, and approved August 10, 2004 (received for review June 18, 2004) Replication of Streptomyces linear chromosomes and plasmids gation and, remarkably, that both of these eubacterial enzymes -proceeds bidirectionally from a central origin, leaving recessed 5؅ can function efficiently as RTs in addition to having the bio termini that are extended by a telomere binding complex. This chemical properties predicted from their sequences. We further complex contains both a telomere-protecting terminal protein show that the Streptomyces coelicolor and Streptomyces lividans (Tpg) and a telomere-associated protein that interacts with Tpg TopA proteins are prototypes for a subfamily of bacterial and the DNA ends of linear Streptomyces replicons. By using topoisomerases whose catalytic domains contain a unique Asp– histidine-tagged telomere-associated protein (Tap) as a scaffold, Asp doublet motif that is required for their RT activity and which we identified DNA polymerase (PolA) and topoisomerase I (TopA) is essential also to the RNA-dependent DNA polymerase func- proteins as other components of the Streptomyces telomere com- tions of HIV RT and eukaryotic cell telomerases (16, 17). plex. Biochemical characterization of these proteins indicated that both PolA and TopA exhibit highly efficient reverse transcriptase Materials and Methods (RT) activity in addition to their predicted functions. Although RT Plasmid and Bacterial Strains.
    [Show full text]
  • Molecular Insights Into Mitochondrial Transcription and Its Role in DNA Replication
    Molecular insights into mitochondrial transcription and its role in DNA replication Viktor Posse Department of Medical Biochemistry and Cell Biology Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg, Sweden, 2017 Molecular insights into mitochondrial transcription and its role in DNA replication © 2016 Viktor Posse [email protected] ISBN 978-91-629-0024-3 (PRINT) ISBN 978-91-629-0023-6 (PDF) http://hdl.handle.net/2077/48657 Printed in Gothenburg, Sweden 2016 Ineko AB Abstract The mitochondrion is an organelle of the eukaryotic cell responsible for the production of most of the cellular energy-carrying molecule adenosine triphosphate (ATP), through the process of oxidative phosphorylation. The mitochondrion contains its own genome, a small circular DNA molecule (mtDNA), encoding essential subunits of the oxidative phosphorylation system. Initiation of mitochondrial transcription involves three proteins, the mitochondrial RNA polymerase, POLRMT, and its two transcription factors, TFAM and TFB2M. Even though the process of transcription has been reconstituted in vitro, a full molecular understanding is still missing. Initiation of mitochondrial DNA replication is believed to be primed by transcription prematurely terminated at a sequence known as CSBII. The mechanisms of replication initiation have however not been fully defined. In this thesis we have studied transcription and replication of mtDNA. In the first part of this thesis we demonstrate that the transcription initiation machinery is recruited in discrete steps. Furthermore, we find that a large domain of POLRMT known as the N-terminal extension is dispensable for transcription initiation, and instead functions in suppressing initiation events from non-promoter DNA. Additionally we demonstrate that TFB2M is the last factor that is recruited to the initiation complex and that it induces melting of the mitochondrial promoters.
    [Show full text]
  • DNA Polymerase I, a Template-Dependent DNA Polymerase, Catalyzes 5'3' Synthesis of DNA
    Description DNA Polymerase I, a template-dependent DNA polymerase, catalyzes 5'3' synthesis of DNA. The enzyme also exhibits 3'5' exonuclease (proofreading) activity, 5'3' exonuclease activity and ribonuclease H PRODUCT INFORMATION activity. DNA Polymerase I Applications DNA labeling by nick-translation in conjunction with Pub. No. MAN0013723 DNase I (1-3). Rev. Date 03 May 2016 (B.00) Second-strand cDNA synthesis in conjunction with RNase H (4). Source E.coli cells with a cloned polA gene from E.coli. Lot: _ Expiry Date: _ Molecular Weight 103 kDa monomer. Definition of Activity Unit One unit of the enzyme catalyzes the incorporation #EP0041 #EP0042 Components of 10 nmol of deoxyribonucleotides into a polynucleotide 500 U 2500 U fraction 30 min at 37 °C. Concentration 10 U/µL 10 U/µL 10X Reaction Buffer 1 mL 5 x 1 mL Store at -20 °C www.thermofisher.com For Research Use Only. Not for use in diagnostic procedures. Storage Buffer CERTIFICATE OF ANALYSIS The enzyme is supplied in: 25 mM Tris-HCl (pH 7.5), Endodeoxyribonuclease Assay 0.1 mM EDTA, 1 mM DTT and 50% (v/v) glycerol. 10X Reaction Buffer Incubation of supercoiled plasmid DNA with 500 mM Tris-HCl (pH 7.5 at 25 °C), 100 mM MgCl2, polymerase. 10 mM DTT. Quality authorized by: Jurgita Zilinskiene Inhibition and Inactivation Inhibitors: metal chelators, PPi, Pi (at high concentra- tions) (5). Inactivated by heating at 75 °C for 10 min or by addition of EDTA. Note DNA Polymerase I accepts modified nucleotides (e.g. biotin-, digoxigenin-, fluorescent-labeled nucleotides) as substrates for the DNA synthesis.
    [Show full text]
  • Arthur Kornberg 1 9 1 8 – 2 0 0 7
    NATIONAL ACADEMY OF SCIENCES ARTHUR KORNBERG 1 9 1 8 – 2 0 0 7 A Biographical Memoir by I. ROBERT LEHMAN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photo courtesty of Staford University Visual Arts. ARTHUR KORNBERG March 3, 1918–October 26, 2007 BY I . ROBERT LEHMAN ITH THE DEATH OF ARTHUR KORNBERG on October 26, W2007, one of the giants of 20th-century biochemistry was lost. Arthur Kornberg was born in Brooklyn, New York, on March , 1918. The son of Joseph and Lena Kornberg, both Eastern European immigrants, he grew up in Brooklyn and attended the City College of New York (CCNY), which was then—and still is—tuition free, and can count several Nobel laureates among its graduates. A precocious student, Korn- berg skipped three years of school and entered CCNY at the age of 15 and graduated at 19 with a B.S. in chemistry and biology. The United States was then deep in the Great Depression, and Kornberg worked to help support the family while in high school and college, first in his parents’ small hardware store and then at a men’s clothing shop. With virtually no jobs to be had for a newly minted graduate of CCNY, Kornberg was fortunate in being accepted in 197 to the University of Rochester School of Medicine, where his ambition was eventually to practice internal medicine. As a sign of the times, of the 200 premedical students in his class at CCNY only five managed to gain acceptance to a medical school.
    [Show full text]
  • DNA Polymerase I- Dependent Replication (Temperature-Sensitive Dna Mutants/Extragenic Suppression) OSAMI NIWA*, SHARON K
    Proc. Nati Acad. Sci. USA Vol. 78, No. 11, pp. 7024-7027, November 1981 Genetics Alternate pathways of DNA replication: DNA polymerase I- dependent replication (temperature-sensitive dna mutants/extragenic suppression) OSAMI NIWA*, SHARON K. BRYAN, AND ROBB E. MOSES Department ofCell Biology, Baylor College of Medicine, Houston, Texas 77030 Communicated by D. Nathans, July 10, 1981 ABSTRACT We have previously shown that someEscherichia proceed in the presence of a functional DNA polymerase I ac- coli [derivatives of strain HS432 (polAl, polB100, polC1026)] can tivity, despite a ts DNA polymerase III (6). replicate DNA at a restrictive temperature in the presence of a We report here that DNA replication in the parent strain polCts mutation and that such revertants contain apparent DNA becomes temperature-resistant with introduction ofDNA poly- polymerase I activity. We demonstrate here that this strain ofE. merase I activity but is ts in the absence of DNA polymerase colibecomes temperature-resistant upon the introduction ofa nor- I or presence of a ts DNA polymerase I activity. We conclude mal gene for DNA polymerase I or suppression of the polAl non- that this strain contains a sense mutation. Such temperature-resistant phenocopies become mutation (pcbA-) that allows repli- temperature-sensitive upon introduction of a temperature-sensi- cation to be dependent on DNA polymerase I polymerizing tive DNA polymerase I gene. Our results confirm that DNA rep- activity. This locus can be transduced to other E. coli strains and lication is DNA polymerase I-dependent in the temperature-re- again exerts phenotypic suppression of the polCts mutation in sistant revertants, indicating that an alternative pathway of the presence of DNA polymerase I.
    [Show full text]
  • And Exonuclease-Deficient Mitochondrial DNA Polymerase Mutants in Genomically Engineered
    ARTICLE Received 8 Jul 2015 | Accepted 6 Oct 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9808 OPEN Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies Ana Bratic1,*, Timo E.S. Kauppila1,*, Bertil Macao2, Sebastian Gro¨nke3, Triinu Siibak2, James B. Stewart1, Francesca Baggio1, Jacqueline Dols3, Linda Partridge3, Maria Falkenberg2, Anna Wredenberg4 & Nils-Go¨ran Larsson1,4 Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLgA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLgA, and introduce alleles expressing exonuclease- (exoÀ ) and polymerase-deficient (polÀ ) POLgA versions. The exoÀ mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas polÀ mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Recon- stitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLgA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLgA mutation disease. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne D-50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, Gothenburg SE-40530, Sweden. 3 Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne D-50931, Germany.
    [Show full text]
  • A Review of Isozymes in Cancer1
    Cancer Research VOLUME31 NOVEMBER 1971 NUMBER11 [CANCER RESEARCH 31, 1523-1542, November 1971] A Review of Isozymes in Cancer1 Wayne E. Criss Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32601 TABLE OF CONTENTS postulated role for that particular isozymic system in cellular metabolism. Summary 1523 Introduction 1523 Normal enzyme differentiation 1523 INTRODUCTION Tumor enzyme differentiation 1524 Isozymes 1524 Normal Enzyme Differentiation DNA polymerase 1524 Enzyme differentiation is the process whereby, during the Hexokinase 1525 Fructose 1,6-diphosphatase 1525 development of an organ in an animal, the organ acquires the quantitative and qualitative adult enzyme patterns (122). Key Aldolase 1526 pathway enzymes in several metabolic processes have been Pyruvate kinase 1527 found to undergo enzymatic differentiation. The enzymes Láclatedehydrogenase 1527 Isocitrate dehydrogenase 1527 involved in nitrogen metabolism, and also in urea cycle Malate dehydrogenase 1528 metabolism (180), are tyrosine aminotransferase (123, 151, Glycerol phosphate dehydrogenase 1529 330, 410), tryptophan pyrrolase (261), serine dehydratase Glutaminase 1529 (123, 410), histidine ammonia lyase (11), and aspartate Aspartate aminotransferase 1530 aminotransferase (337, 388). The enzymes involved in nucleic Adenylate kinase 1531 acid metabolism are DNA polymerase (156, 277) and RNase (52). In glycolysis the enzymes are hexokinase-glucokinase Carbamyl phosphate synthetase 1531 Lactose synthetase 1533 (98, 389), galactokinase 30, aldolase (267, 315), pyruvate Discussion 1533 kinase (73, 386), and lactate dehydrogenase (67, 69). In References 1533 mitochondrial oxidation they are NADH oxidase, succinic oxidase, a-glycero-P oxidase, ATPase, cytochrome oxidase, and flavin content (84, 296). In glycogen metabolism the SUMMARY enzymes involved are UDPG pyrophosphorylase and UDPG glucosyltransferase (19).
    [Show full text]