Brooding in Cocculiniform Limpets (Gastropoda) and Familial Distinctiveness of the Nucellicolidae (Copepoda): Misconceptions Reviewed from a Chitonophilid Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Brooding in Cocculiniform Limpets (Gastropoda) and Familial Distinctiveness of the Nucellicolidae (Copepoda): Misconceptions Reviewed from a Chitonophilid Perspective Biological Journal of the Linnean Society, 2002, 75, 187-217. With 16 figures Brooding in cocculiniform limpets (Gastropoda) and familial distinctiveness of the Nucellicolidae (Copepoda): misconceptions reviewed from a chitonophilid perspective RONY HUYS FLS1*, PABLO J. LÓPEZ-GONZÁLEZ2, ELISA ROLDÁN3 a n d ÁNGEL A. LUQUE3 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes, 6,41012 Sevilla, Spain 3Laboratorio de Biología Marina, Departamento de Biología, Universidad Autónoma, 28049 Madrid, Spain Received 21 January 2001; accepted for publication 16 August 2001 Nauplii, copepodids and adults of a new mesoparasitic genus and species of Chitonophilidae,Lepetellicola brescia nii, are described from the palliai cavity of a deepwater cocculiniform limpet,Lepetella sierrai, collected in the Bay of Biscay and Gulf of Cádiz. Re-examination of the type material of the recently established Nucellicolidae revealed several important observational errors in the original description, such as the oversight of the rootlet system in the adult female and misinterpretations of the tagmosis and antennulary segmentation in the late copepodid. Lamb et al.’s (1996) criteria used to justify the familial distinctiveness of the Nucellicolidae are all invalid. The family is relegated to a junior synonym of the Chitonophilidae on the basis of overwhelming support provided by copepodid and adult morphology. The impact of heterochrony on the body plan of adults and developmental stages is discussed. Phylogenetic analysis supports a basal dichotomy dividing the Chitonophilidae into a mesoparasitic clade, utilizing exclusively polyplacophoran hosts, and a sisterclade grouping genera associated with chitons, prosobranch gas­ tropods and cocculiniform limpets. The presence of maxillipeds and postmaxillipedal apodemes in the adult males of the latter clade is considered as apomorphic rather than plesiomorphic, being the result of incomplete moulting and correlated with the ventral position of the genital apertures.Nucellicola is identified as the sistergroup of the only other endoparasitic genus,Tesonesma, found in the body cavity of chitons. The inferred relationships indicate that host switching has occurred twice in the evolution of the Chitonophilidae. Examination of the antennulary segmentation and setation patterns of copepodidsLepetellicola in andNucellicola unequivocally refutes both the current placement of the Chitonophilidae in the Poecilostomatoida and its alterna­ tive assignment to the Siphonostomatoida. Exclusion from the Poecilostomatoida is reinforced by the absence of a coxo-basis in the antenna. The family is placed with the cyclopoids, providing further evidence for the crown-group status of the Poecilostomatoida within the currently paraphyletic Cyclopoida. A critical review of the published reports of brooding in cocculiniform limpets demonstrated that there is, as yet, no tangible evidence for this phe­ nomenon in either the Lepetelloidea or Cocculinoidea. © 2002 The Linnean Society of London,Biological Journal of the Linnean Society, 2002, 75, 187—217. ADDITIONAL KEYWORDS: Chitonophilidae - heterochrony -Lepetella - Lepetellicola gen. nov. - mollus- can hosts - phylogeny. ““Corresponding author. E-mail:[email protected] © 2002 The Linnean Society of London,Biological Journal of the Linnean Society, 2002, 75, 187-217 187 188 R. HUYS ETAL. INTRODUCTION Vaigamidae and Amazonicopeidae (Thatcher& Robertson, 1984; Thatcher, 1986). These families were Copepods, together with nematodes and insects, are proposed for highly modified fish parasitic copepods the most abundant multicellular organisms on Earth. but in reality are merely specialized lineages of the Current evidence suggests that copepods originated Ergasilidae (Abdelhalimet al., 1993; Amado et al., from the marine hyperbenthic habitat (Huys & 1995). The uncritical acceptance of such familial iden­ Boxshall, 1991) and subsequently spread out in tity, without considering the possibility of the taxon sediments across the entire salinity spectrum. Their being at a terminal node in a larger encompassing current position of world predominance, however, can clade, is potentially naive and unscientific, particu­ be attributed to two principal, recurrent, radiation larly when no attempt has been made to identify the events, i.e. their major habitat shift into the marine hypothetical outgroup. plankton, and the evolution of parasitism. Given their We have used mollusc-infesting copepods as an moderately high host specificity in conjunction with example to demonstrate these misconceptions. The the dazzling spectrum of potential marine hosts, it discovery of a new genus of Chitonophilidae prompted is highly conceivable that parasitic copepods sig­ us to challenge the widely assumed phenomenon of nificantly outnumber their free-living counterparts brooding in cocculiniform limpets, an anatomically in species diversity. It would not be extravagant to and biologically very diverse group currently classified assume that every other kind of marine macro­ as an order or suborder of the streptoneurous Gas­ invertebrate on earth has at least one copepod species tropoda (Haszprunar, 1998). It has also provided new acting as its own personalized parasite. This suc­ morphological information of high phylogenetic signif­ cessful colonization or utilization of virtually every icance, causing serious implications for the taxonomic metazoan phylum has generated a great diversity in status of the Nucellicolidae, a recently proposed family copepod body morphology, which is arguably unparal­ of highly transformed endoparasitic copepods based leled among the Crustacea. Regrettably, this variety solely on autapomorphies. in body plan has also given rise to unfortunate conse­ quences for phylogenetic analysis. More specifically, MATERIAL AND METHODS the highly transformed forms frequently lie at the root of two important misconceptions. Museum collections of Lepetella sierrai D antart & Failure to recognize the extreme modification of Luque (1994) (Mollusca, Cocculiniformia, Lepetel­ certain copepods has repeatedly resulted in them loidea), deposited in the Naturhistoriska Riksmuseet being misinterpreted as part of the host. Garstang in Stockholm (NRS) and the Museo Nacional de (1890) recorded ‘pieces of spawn’ attached to the den- Ciencias Naturales in Madrid (MNCN), were exam­ dronotid nudibranchLomanotus genei (Verany, 1846) ined for parasitic copepods. This material was col­ but these were later identified by Scott & Scott (1895) lected in the Iberian-Moroccan Gulf (BALGIM as egg-sacs of the splanchnotrophid copepodLoman­ expedition, 1984, coordinated by the Muséum oticola insolens Scott & Scott (1895), the urosome of National d’Histoire Naturelle, Paris) and in the Bay which is typically protruding through the host integu­ of Biscay (Fauna Ibérica II expedition, coordinated ment. Another example of such observational error is by MNCN). Host material was obtained from empty shown by Muñozet al. (1996) who figured an unusual or occasionally inhabited, corneous tubes of the penis with ‘... a row of hooks on each side’ in their sedentary polychaete Hyalinoecia tubicola (O.F. redescription of the goniodoridid nudibranchOkenia Müller, 1776), on which Lepetella sierrai lives and luna (Millen et al., 1994). The offset lobate anterior feeds. Copepods were cleared and dissected in lactic end, the traces of segmentation in the posterior part, acid; the dissected parts were mounted on slides the number of lateral processes and the presence of an in lactophenol mounting medium. Preparations were unpaired median outgrowth leave no doubt that the sealed with Glyceel (BDH Laboratory Supplies, supposed penis is an adult female ofIsmaila Bergh, Poole, UK) or transparent nail varnish. All drawings 1867, a genus of endoparasitic copepods (Splanch­ have been prepared using a camera lucida on an notrophidae) typically associated with the kidney, Olympus BH (Hamburg, Germany) or a Leica DMR pericardium or the digestive gland of nudibranch and (Wetzlar, Germany) differential interference contrast sacoglossan opisthobranchs (Huys, 2001). microscope. Both host and parasite specimens were Secondly, failure to place strange copepods in examined with a Philips XL 30 scanning electron existing classifications, often compounded by imper­ microscope (Eindhoven, The Netherlands). Specimens fect dissection and observation, has recently led to the were prepared by dehydration through graded proposal of a number of monogeneric or monotypic acetone, critical point dried, mounted on stubs and families. An example of such undesirable inflation sputter-coated with gold or palladium. of higher categories is illustrated by the families The descriptive terminology is adopted from Huys& © 2002 The Linnean Society of London,Biological Journal of the Linnean Society, 2002, 75, 187-217 F igure 1. Lepetellicola brescianii gen. et sp. nov. A, paratype ? attached to host, dorsal view showing attached dwarf male ($), eggs and spermatophores [e.s., remaining egg string of hatched egg; sp., spermatophore; ov., ovary]; B, same, ventral view showing two dwarf males (<?<?), another two being removed and not illustrated [p.l., posterior lobe]; C, paratype ? attached to host with offspring at different stages of development, dorsal view [co., copepodid; e., egg; ho., host’s integu­ ment; nb young nauplius enclosed in egg membrane; n2,
Recommended publications
  • (Gastropoda: Cocculiniformia) from Off the Caribbean Coast of Colombia
    ó^S PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON ll8(2):344-366. 2005. Cocculinid and pseudococculinid limpets (Gastropoda: Cocculiniformia) from off the Caribbean coast of Colombia Néstor E. Ardila and M. G. Harasewych (NEA) Museo de Historia Natural Marina de Colombia, Instituto de Investigaciones Marinas, INVEMAR, Santa Marta, A.A. 1016, Colombia, e-mail: [email protected]; (MGH) Department of Invertebrate Zoology, MRC-I63, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012 U.S.A., e-mail: [email protected] Abstract.•The present paper reports on the occurrence of six species of Cocculinidae and three species of Pseudococculinidae off the Caribbean coast of Colombia. Cocculina messingi McLean & Harasewych, 1995, Cocculina emsoni McLean & Harasewych, 1995 Notocrater houbricki McLean & Hara- sewych, 1995 and Notocrater youngi McLean & Harasewych, 1995 were not previously known to occur within the of the Caribbean Sea, while Fedikovella beanii (Dall, 1882) had been reported only from the western margins of the Atlantic Ocean, including the lesser Antilles. New data are presented on the external anatomy and radular morphology of Coccocrater portoricensis (Dall & Simpson, 1901) that supports its placement in the genus Coccocrater. Coc- culina fenestrata n. sp. (Cocculinidae) and Copulabyssia Colombia n. sp. (Pseu- dococculinidae) are described from the upper continental slope of Caribbean Colombia. Cocculiniform limpets comprise two paraphyletic, with the Cocculinoidea related groups of bathyal to hadal gastropods with to Neomphalina and the Lepetelloidea in- global distribution that live primarily on cluded within Vetigastropoda (Ponder & biogenic substrates (e.g., wood, algal hold- Lindberg 1996, 1997; McArthur & Hara- fasts, whale bone, cephalopod beaks, crab sewych 2003).
    [Show full text]
  • Contributions in Science
    NUMBER 453 9 JUNE 1995 CONTRIBUTIONS IN SCIENCE REVIEW OF WESTERN ATLANTIC SPECIES OF COCCULINID AND PSEUDOCOCCULINID LIMPETS, WITH DESCRIPTIONS OF NEW SPECIES (GASTROPODA: COCCULINIFORMIA) JAMES H. MCLEAN AND M. G. HARASEWYCH NATURAL HISTORY MUSEUM OF LOS ANGELES GOUNTY Thf: scientific publications of the Natural History Mu- SERIAL seum of Los Angeles County have been issued at irregular intervals in three major series; the issues in each series are PUBLICATIONS numbered individually, and numbers run consecutively, OF THE regardless of the subject matter. • Contributions in Science, a miscellaneous series of tech- NATURAL HISTORY nical papers describing original research in the life and earth sciences. MUSEUM OF • Science Bulletin, a miscellaneous series of monographs describing original research in the hfe and earth sci- LOS ANGELES ences. This series was discontinued in 1978 with the issue of Numbers 29 and 30; monographs are now COUNTY published by the Museum in Contributions in Science. • Science Series, long anieles and collections of papers on natural history topics. Copies of the publications in these series are sold through the Museum Book Shop. A catalog is available on request. The Museum also publishes Technical Reports, a mis- cellaneous series containing information relative to schol- arly inquiry and collections but not reporting the results of original research. Issue is authorized by the Museum's Scientific Publications Committee; however, manuscripts do not receive anonymous peer review. Individual Tech- nical Reports may be obtained from the relevant Section of the Museum. SCIENTIFIC PUBLICATIONS COMMITTEE «ÎWA James L. Powell, Museum President NATURAL HISTORY MUSEUM Daniel M. Cohen, Committee OF Los ANGELES COUNTY Chairman 900 EXPOSITION BOULEVARD Brian V.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Geobio-Center LMU Report 2014 / 2015
    GeoBio-Center LMU LMU ReportGeoBio-Center 2014 / 2015 Report 2012 / 2013 GeoBio-CenterLMU Report 2014 / 2015 Editor: Dirk Erpenbeck, Angelo Poliseno Layout: Lydia Geißler Cover composition: Lydia Geißler GeoBio-Center LMU, Richard-Wagner-Str. 10, 80333 München http://www.geobio-center.uni-muenchen.de Contents Welcoming note ......................................................................................................................4 Achievements of the GeoBio-Center LMU members 2014 & 2015 at a glance ......................5 Members of the GeoBio-CenterLMU ........................................................................................6 Memorial to Alexander Volker Altenbach (1953-2015) ..........................................................9 Publications in ISI-indexed Journals ...................................................................................14 Other peer-reviewed Publications .......................................................................................21 Further Publications .............................................................................................................23 Grants and Stipends ............................................................................................................26 Honors and Awards ..............................................................................................................27 Presentations on Conferences and Symposia ....................................................................28 Teaching ................................................................................................................................35
    [Show full text]
  • Mollusks and a Crustacean from Early Oligocene Methane-Seep Deposits in the Talara Basin, Northern Peru
    Mollusks and a crustacean from early Oligocene methane-seep deposits in the Talara Basin, northern Peru STEFFEN KIEL, FRIDA HYBERTSEN, MATÚŠ HYŽNÝ, and ADIËL A. KLOMPMAKER Kiel, S., Hybertsen, F., Hyžný, M., and Klompmaker, A.A. 2020. Mollusks and a crustacean from early Oligocene methane- seep deposits in the Talara Basin, northern Peru. Acta Palaeontologica Polonica 65 (1): 109–138. A total of 25 species of mollusks and crustaceans are reported from Oligocene seep deposits in the Talara Basin in north- ern Peru. Among these, 12 are identified to the species-level, including one new genus, six new species, and three new combinations. Pseudophopsis is introduced for medium-sized, elongate-oval kalenterid bivalves with a strong hinge plate and largely reduced hinge teeth, rough surface sculpture and lacking a pallial sinus. The new species include two bivalves, three gastropods, and one decapod crustacean: the protobranch bivalve Neilo altamirano and the vesicomyid bivalve Pleurophopsis talarensis; among the gastropods, the pyropeltid Pyropelta seca, the provannid Provanna pelada, and the hokkaidoconchid Ascheria salina; the new crustacean is the callianassid Eucalliax capsulasetaea. New combina- tions include the bivalves Conchocele tessaria, Lucinoma zapotalensis, and Pseudophopsis peruviana. Two species are shared with late Eocene to Oligocene seep faunas in Washington state, USA: Provanna antiqua and Colus sekiuensis; the Talara Basin fauna shares only genera, but no species with Oligocene seep fauna in other regions. Further noteworthy aspects of the molluscan fauna include the remarkable diversity of four limpet species, the oldest record of the cocculinid Coccopigya, and the youngest record of the largely seep-restricted genus Ascheria.
    [Show full text]
  • A New Species of Clausidiidae (Copepoda, Poecilostomatoida) Associated with the Bivalve Ruditapes Philippinarum in Korea
    Cah. Biol. Mar. (1996)37: 1-6 A new species of Clausidiidae (Copepoda, Poecilostomatoida) associated with the bivalve Ruditapes philippinarum in Korea Il-Hoi KIM(1) AND Jan H. STOCK(2) (1)Department of Biology, Kangreung National University, Kangreung, 210-702, South Korea (2)c/o Institute of Systematics and Population Biology, University of Amsterdam, P.O.Box 94766, 1090 GT Amsterdam, The Netherlands Abstract : A small-sized clausidiid copepod was found associated with the commercially important bivalve, Ruditapes phi- lippinarum, from a Korean coastal lagoon. Since it resembles morphologically a European form known as Hersiliodes late- ricius, it is attributed to a new species, H. exiguus n. sp., of the same genus. The uneasy distinction between the genera Hersiliodes and the very similar Hemicyclops is discussed. Résumé : Un Copépode de petite taille a été découvert associé à un bivalve commercialement important, Ruditapes philip- pinarum, provenant d'un lagon côtier coréen. Parce qu'il ressemble morphologiquement à une forme européenne connue comme Hersiliodes latericius, il a été attribué au même genre, avec le nom d'espèce H. exiguus n. sp. La distinction délica- te entre les genres Hersiliodes et Hemicyclops, très similaires l'un de l'autre, est discutée. Keywords : Copepoda Clausidiidae, Hersiliodes exiguus n. sp., Hemicyclops, Ruditapes, Korea Introduction and 1 S (paratypes, partially dissected). Holotype, allotype The short-necked clam, Ruditapes philippinarum and 4 paratypes preserved in Zoölogisch Museum (Adams & Reeve, 1850) is an edible and commercially Amsterdam (cat. no. ZMA Co. 201.813), 2 9 and 1 3 kept important bivalve, originally inhabiting southeast Asian and by I.-H.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Host Selection of the Symbiotic Copepod Clausidium Dissimile in Two Sympatric Populations of Ghost Shrimp
    MARINE ECOLOGY PROGRESS SERIES Vol. 256: 151–159, 2003 Published July 17 Mar Ecol Prog Ser Host selection of the symbiotic copepod Clausidium dissimile in two sympatric populations of ghost shrimp J. L. Corsetti1, K. M. Strasser 2,* 1Department of Biology, University of Tampa, 401 W Kennedy Blvd., Tampa, Florida 33606, USA 2Biological Sciences Department, Ferris State University, 820 Campus Drive, ASC 2004, Big Rapids, Michigan 49307, USA ABSTRACT: Ghost shrimp, Lepidophthalmus louisianensis (Schmitt 1935) and Sergio trilobata (Biffar 1970) are 2 common burrowing decapod crustaceans in Tampa Bay, Florida, which affect the benthic community through bioturbation. The burrow also plays a crucial role in determining benthic com- munity structure, since it may house several symbionts, one of which is the copepod Clausidium dis- simile Wilson, 1921. This study was conducted to investigate factors that affect the density of C. dis- simile on ghost shrimp specimens both in the field and in the laboratory. Collections of L. louisianensis and S. trilobata were made over a 15 mo period to determine the prevalence of C. dis- simile in the field. Analysis of monthly field data showed that host shrimp (p = 0.0001), and sampling month (p = 0.0310) were significantly correlated with the host-size adjusted density of the symbiont C. dissimile, with more copepods preferring specimens of S. trilobata over L. louisianensis. Although host sex did not have a significant effect on host-size adjusted copepod density, percentage preva- lence of copepods was significantly higher for females than males in S. trilobata (p < 0.0001). Labora- tory experiments supported observations from the field in that C.
    [Show full text]
  • In Conchological Morphology Oligocene-Miocene Lottiids (Mollusca, Patellogastropoda) Paratethys
    Cainozoic Research, 7(1-2), pp. 109-117, April 2010 A in between striking convergence conchological morphology Oligocene-Miocene lottiids (Mollusca, Patellogastropoda) from the North Sea Basin and the Paratethys Olga+Yu. Anistratenko¹Adri+W. Burger² & Vitaliy+V. Anistratenko³ 1 Institute of Geological Sciences ofNationalAcademy ofSciences ofthe Ukraine, O. GontcharaSir., 55-b, 01601, Kiev, Ukraine. E-mail: [email protected] 2 P. Soutmanlaan 18, NL-1701 MC Heerhugowaard, The Netherlands. E-mail: [email protected] 3 1.1. SchmalhausenInstitute ofZoology ofNationalAcademy ofSciences ofthe Ukraine, B. Khmelnitsky Str., 15, 01601. Kiev, Ukraine. E-mail: [email protected] Received 24 February 2009; revised version accepted 14 February 2010 The protoconch and teleoconchmorphology of Patella compressiuscala Karsten, 1849 (North Sea Basin, Chattian - Langhian) is de- The Boreobliniais established for this which is characterized indicative of scribed and illustrated. new genus species by a protoconch a lecithotrophic typeof early development, lacking even a short free-swimming larval stage. The distinctness ofBoreobliniagen. nov. from other Patellogastropoda such as Tectura,Patella, and Helcionexhibiting the typical patellogastropodprotoconch types is supported also by its unusual shell structure. An amazing heterochronous convergence ofboth protoconch and teleoconch morphology between the new species from the North Sea Basin and Miocene Flexitectura subcostata (Sinzow, 1892)from the Sarmatianofthe Paratethys is shown. Detailed descriptions and SEM images of species involved are presented. KEY WORDS:- Gastropoda, Lottidae, Miocene, Europe, protoconch, new genus Introduction marine gastropods with a planktotrophic larva in their on- togeny {e.g., Bandel, 1982, 1991; Sasaki, 1998; Kahn, 2004). The characters of embryonic, larval, and juvenile Oligocene and Miocene patellogastropods from the Medi- shells can be used to reconstruct the phylogeny of some terranean and Paratethys as well as from the North Sea the of the the gastropods.
    [Show full text]
  • Life History of the Copepod Hemicyclops Spinulosus (Poecilostomatoida, Clausidiidae) Associated with Crab Burrows with Notes On
    Plankton Benthos Res 3(4): 189–201, 2008 Plankton & Benthos Research © The Plankton Society of Japan Life history of the copepod Hemicyclops spinulosus (Poecilostomatoida, Clausidiidae) associated with crab burrows with notes on male polymorphism and precopulatory mate guarding HIROSHI ITOH1 &SHUHEI NISHIDA2* 1 Suidosha Co. Ltd, 8–11–11 Ikuta, Tama, Kawasaki 214–0038, Japan 2 Ocean Research Institute, University of Tokyo, 1–15–1 Minamidai, Nakano, Tokyo 164–8639, Japan Received 9 January 2008; Accepted 30 May 2008 Abstract: A 25-month field survey was conducted to investigate the life cycle and seasonal population fluctuations in the poecilostomatoid copepod Hemicyclops spinulosus in the burrows of the ocypodid crab Macrophthalmus japonicus in the mud-flats of the Tama-River estuary, central Japan. On the basis of sample collections in the water column and from the crab burrows, it was confirmed that H. spinulosus is planktonic during the naupliar stages and settles on the bottom during the first copepodid stage to inhabit the burrows. Furthermore, the copepods’ reproduction took place mainly during early summer to autumn with a successive decrease from autumn to winter. A supplementary observation on the burrows of the polychaete Tylorrhynchus heterochaetus suggested that these burrows are another important habi- tat of H. spinulosus. There were additional discoveries of male polymorphism and precopulatory mate guarding behav- ior by males, suggesting an adaptation in the reproductive strategy of this copepod to their narrow habitat spaces and low population densities, in contrast to the congeneric species H. gomsoensis, which co-occurs in the estuary but attains much larger population sizes and is associated with hosts having much larger burrow spaces.
    [Show full text]