Thermoelectric Applications Thermoelectric Generators

Total Page:16

File Type:pdf, Size:1020Kb

Thermoelectric Applications Thermoelectric Generators Université de Pau et des Pays de l'Adour France Laboratoire des Sciences de l’Ingénieur Appliquées à la Mécanique et au Génie Electrique (SIAME EA4581), Fédération IPRA FR2952 Thermoelectric applications Thermoelectric generators CHAMPIER Daniel Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 1 Thermoelectric (TE) Generators TEG convert directly a very small part of the heat moving through them into electricity exchanger exchanger Maximum Power Dependence upon the temperature TE modules difference across the thermoelements Tsc Tsh Th Tc NS. WTMax 2 ... 2 elec 8L Heat Heat Generator sink Construction : ‘‘power factor’’ : .number of thermoelements type of TE material .cross-sectional area .length of each element. Module efficiency Electrical power (<5%) We T 1 zT 1 . TE Tc Qh Th 1 zT Th Electronic converter efficiency, generator maximum power R T TE . Ts DC DC RRRHCTE Storage Battery Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 2 World total final consumption from 1971 to 2011 by fuel (Mtoe) ***Other includes geothermal, solar, wind, etc 1Toe=tonne of oil equivalent =41.8 GJ =11.6 MWh = 1 Tep (français) International Energy Agency publication :2013 Keyworld energy statistic 3 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 3 Gail Tverberg http://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts 4 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 4 173,000 terawatts Energy is not a problem Sustainability is the problem Ocean Thermal Energy y I have a dream 0.005 TW.y <0.00001 TW.y 1 Billion cars with TEG a 250W TEG Yes we can 2014 Perez Massachusetts Clean Energy Center Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 5 Roadmap for climate and energy policies 2008 European Concil new environmental targets : "three 20 targets” by 2020 .To reduce emissions of greenhouse gases by 20%. .To increase energy efficiency to save 20% of EU energy consumption .To reach 20% of renewable energy in the total energy consumption in the EU. January 2014 European Concil new environmental targets by 2030 .To reduce emissions of greenhouse gases by 40%. .To continue improvements in energy efficiency .To reach 27% of renewable energy in the total energy consumption in the EU. 6 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 6 Some EfficiencyEfficiency in Electricity Generation 2003 Union of the electricity industry . L’objectif « 20-20-20 » vise pour 2020 à : Diminuer de 20 % les émissions de Gaz à Effet de Serre (GES) par rapport aux missions de 1990 ; Réduire de 20 % la consommation d'énergie par le biais de l'amélioration2013 de l'efficacité énergétique; Atteindre 20 % d'énergies renouvelables dans le bouquet énergétique. 7 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 7 The carbon footprint of Energy-Technologies Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 8 TE efficiency 50 45 Carnot efficiency ZT=3 40 ZT=2 ZT=1 35 ZT=0.8 ZT=0.5 30 25 20 efficiency % efficiency 15 10 5 0 0 50 100 150 200 250 300 difference of temperature Th-Tc K We T 1 zT 1 . Thermoelectricity : no chance for big powerTE plant Tc Qh Th 1 zT Th Thermoelectricity has a chance only where other forms of energy production are not cost effective. Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 9 Classification of generators • recovery of thermal energy lost: optimization of wasted heat • production in extreme environment: sources dedicated to TEG • decentralized power generation: renewable energy sources • microgeneration: all heat sources are acceptable • thermoelectric solar: energy source : the sun. Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 10 Waste heat 1 quad=2.93 1011kWh=1.055x1018J Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 11 Secteur automobile Thermoelectric technology for automotive Waste Heat Recovery Prototypes : - FIAT - FORD - GM - BMW - Amerigon - Renoter (Renault truck Volvo …) Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 12 Thermoelectric technology for automotive Waste Heat Recovery Opportunity for Waste Heat Recovery with Thermoelectrics Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 13 Thermoelectric technology for automotive Waste Heat Recovery 3% efficiency mean 0.9kW Sankey diagram for diesel vehicle light duty trucks Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 14 Economic context European Union New CO2 emission performance standards Emission target for passengers cars 130g/km for 2012 drastically reduced to 95g/km for 2020 Emission target for light duty trucks 175g/km for 2014 135g/km for 2020. Fine and penalties to be paid by car manufacturers that exceed EU CO2 limits 20€ per exceeding gram starting from 2012 95€ per exceeding gram starting from 2020 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 15 Comparison Alternator - TEG Electricity produced by alternator Conversion efficiency from fuel chemical energy to mechanical energy 25-27% alternator efficiency from mechanical to electrical energy 60% conversion efficiency from fuel chemical energy to electrical energy 15-16% Electricity produced by TEG small-medium gasoline engine at motorway driving condition is characterized by a thermal power, in its exhaust gases, of 10kW at 600°C, 4-5% system conversion efficiency, which can be feasible with ZT=1-1.2 is enough to guarantee 400-500 Wel. 2 400-500Wel means 6-7g/km CO reduction (Fiat Research Center) Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 16 Automotive Requirements for a TE Generator Requirements •Backpressure limit in TEG •Exchanger must not disturb too much exhaust gases: pressure drops very low (tens of a few millibars). •Temperature limit for TE materials (add bypass for exhaust gases) •Durability test requirements •Assembly requirements •Control and sensor requirements •Power conditioning (DC/DC converter) •Recycling •Price and Performance Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 17 Alternator Replacement by a TEG A TEG must be able to provide necessary power ( about 3kw 220A 14V) to the vehicle under extremely challenging conditions: • Idle • City drive cycle (Start-Stop) • +50°C to -30°C ambient conditions • Full accessory loads, including current spikes • Reduce TOTAL fuel consumption, weight, and cost compared to an alternator/battery system Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 18 Ford TEG on a Ford Fusion with 3.0L V-6 Engine the exhaust Half-Heusler + Bi2Te 3segmented TE elements Anticipated power: ~500 Watts (peak) Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 19 Ford Packaging for Prototype TEG TEG FlexCoupling To Exhaust Underfloor Catalyst To Exhaust Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 20 FORD C. Maranville “ Thermoelectric opportunities for light-duty vehicles.” Ford Motor Company 2012 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 21 FORD : TEG performances for a 100km/h cruise Temperature of gas 105km/h Welec A bypass is necessary to protect the TEG Anticipated power: ~500 Watts (peak) !!! C. Maranville “ Thermoelectric opportunities for light-duty vehicles.” Ford Motor Company 2012 Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 22 General Motor 2011Meisner advanced thermoelectric material and generator technology for automotive waste heat at GM.pdf Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 23 GM project may 2011 General Motors Thermoelectric Generator Vehicle Selection : Chevy Suburban This module could capture waste heat in car's exhaust and convert it to energy, improving fuel economy in a Chevy Suburban by 3%. Computer models show the device could generate 350 to 600 watts for city and highway driving, respectively. Finalize design of prototype TEG by-pass valve set point temperature only Bi2Te3 modules for the heat exchanger is about 250°C. 2011Meisner advanced thermoelectric material and generator technology for automotive waste heat at GM.pdf Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 24 GM : Instrumented TEG and Results 150°C Temperature of the heat exchanger is 250°C for a temperature of exhaust gas around 400°C 2011Meisner advanced thermoelectric material and generator technology for automotive waste heat at GM.pdf Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 25 GM : Instrumented TEG and Results 11 W avec un HiZ20 150°C 50°C Coolant 1,3 W avec Temperature variation along the Teg // un HiZ20 to the exhaust gas flow is significant 209$ !!!! Front 250° Middle 178° Rear 148° Temperature variation transverse to the exhaust gas flow is low < 3°C 2011Meisner advanced thermoelectric material and generator technology for automotive waste heat at GM.pdf Daniel CHAMPIER applications de la thermoélectricité GDR Thermoélectricité 2014 26 GM : Instrumented TEG and Results Computer models show the device could generate 350 to 600 watts Open circuit voltage are consistent with a 50°C smaller ΔT than measured between the heat exchanger
Recommended publications
  • Primary Energy Use and Environmental Effects of Electric Vehicles
    Article Primary Energy Use and Environmental Effects of Electric Vehicles Efstathios E. Michaelides Department of Engineering, TCU, Fort Worth, TX 76132, USA; [email protected] Abstract: The global market of electric vehicles has become one of the prime growth industries of the 21st century fueled by marketing efforts, which frequently assert that electric vehicles are “very efficient” and “produce no pollution.” This article uses thermodynamic analysis to determine the primary energy needs for the propulsion of electric vehicles and applies the energy/exergy trade-offs between hydrocarbons and electricity propulsion of road vehicles. The well-to-wheels efficiency of electric vehicles is comparable to that of vehicles with internal combustion engines. Heat transfer to or from the cabin of the vehicle is calculated to determine the additional energy for heating and air-conditioning needs, which must be supplied by the battery, and the reduction of the range of the vehicle. The article also determines the advantages of using fleets of electric vehicles to offset the problems of the “duck curve” that are caused by the higher utilization of wind and solar energy sources. The effects of the substitution of internal combustion road vehicles with electric vehicles on carbon dioxide emission avoidance are also examined for several national electricity grids. It is determined that grids, which use a high fraction of coal as their primary energy source, will actually increase the carbon dioxide emissions; while grids that use a high fraction of renewables and nuclear energy will significantly decrease their carbon dioxide emissions. Globally, the carbon dioxide emissions will decrease by approximately 16% with the introduction of electric vehicles.
    [Show full text]
  • Energy Consumption by Source and Sector, 2019 (Quadrillion Btu)
    U.S. energy consumption by source and sector, 2019 (Quadrillion Btu) Sourcea End-use sectorc Percent of sources Percent of sectors 70 91 Transportation Petroleum 24 3 28.2 36.7 3 5 2 <1 (37%) (37%) 1 34 40 9 Industrial 4 3 26.3 Natural gas 12 33 (35%) 32.1 16 11 (32%) 36 8 44 7 Residential 41 11.9 (16%) 12 9 22 39 Renewable energy 7 3 Commercial 11.5 (11%) 2 <1 9.4 (12%) 56 49 10 Total = 75.9 Coal <1 11.3 (11%) 90 Electric power sectorb Nuclear 100 8.5 (8%) Electricity retail sales 12.8 (35%) Total = 100.2 Electrical system energy losses 24.3 (65%) Total = 37.1 a Primary energy consumption. Each energy source is measured in different physical content of electricity retail sales. See Note 1, "Electrical System Energy Losses," at the end of units and converted to common British thermal units (Btu). See U.S. Energy Information EIA’s Monthly Energy Review, Section 2. Administration (EIA), Monthly Energy Review, Appendix A. Noncombustible renewable c End-use sector consumption of primary energy and electricity retail sales, excluding electrical energy sources are converted to Btu using the “Fossil Fuel Equivalency Approach”, see system energy losses from electricity retail sales. Industrial and commercial sectors EIA’s Monthly Energy Review, Appendix E. consumption includes primary energy consumption by combined-heat-and-power (CHP) and b The electric power sector includes electricity-only and combined-heat-and-power (CHP) electricity-only plants contained within the sector. plants whose primary business is to sell electricity, or electricity and heat, to the public.
    [Show full text]
  • ARIZONA ENERGY FACT SHEET Energy Efficiency & Energy Consumption April 2016
    ARIZONA ENERGY FACT SHEET Energy Efficiency & Energy Consumption April 2016 An Overview of Energy Efficiency Quick Facts: Energy efficiency means reducing the amount of energy Population, 2014: 6,731,484 that you need to perform a particular task. When you Population growth rate, 2006-2014: 0.79% per year practice energy efficiency, you increase or maintain your Number of households, 2014: 2,387,246 level of service, but you decrease the energy used to Source: United States Census Bureau. provide that service through efficient technologies. Examples include ENERGY STAR appliances, compact fluorescent and LED light bulbs, better insulation for Primary Energy Consumption (2013) buildings, more efficient windows, high efficiency air Primary energy consumption: 1,415 trillion Btu conditioning equipment, and vehicles with higher miles Growth rate, 2006-2013: -0.57% per year per gallon (mpg). Another distinct strategy is energy con- servation, which means that you change your behavior or Primary energy consumption per capita: 213 million Btu lifestyle to reduce energy use. Examples include carpool- Ranking, energy consumption per capita: 43 ing, using mass transit, turning thermostats down in the Ranking, total energy consumption: 27 winter and up in summer, and other behavioral changes. Ratio of consumption to production: 2.38 Improving energy efficiency is a “win-win” strategy — Energy Expenditures (2013) it saves money for consumers and businesses, reduces the need for costly and controversial new power plants, Total energy expenditures: $ 22.8 billion increases the reliability of energy supply, cuts pollution Ranking, energy expenditures: 23 and greenhouse gas emissions, and lowers energy Energy expenditures per capita: $ 3,434 imports.
    [Show full text]
  • 2017 2030 a Forward Looking Primary Energy Factor for A
    A forward looking Primary Energy Factor for a greener European Future What is the Primary Energy Factor and why does it exist? The Primary Energy Factor (PEF) connects primary and final energy. It indicates how much primary energy is used to generate a unit of electricity or a unit of useable thermal energy. It allows for comparison between the primary energy consumption of products with the same functionality (e.g. heating) using different energy carriers (particularly electricity vs. fossil fuels). Electricity is a final energy carrier, produced from different primary energy sources like fossil fuels (gas, coal), nuclear and renewables (hydro, wind, solar). Currently a PEF of 2.5 is used as a “conversion factor" to express electricity consumption/savings in primary energy consumption/savings, regardless of the type of energy source used to produce it (also when the electricity comes from renewables). The current conversion factor implies that 1 unit of electricity requires an input of 2.5 units of primary energy. This assumes all power generation in the EU to have a 40% efficiency (100 / 2.5 = 40) – even non-dispatchable renewables from which energy is harnessed without the combustion of fuel. A PEF of 2.5 is too high and does not reflect the reality of power generation. The need to update the PEF to 2.0 The Commission has decided to review the PEF value and methodology in the Energy Efficiency Directive to better reflect the EU energy mix, in particular today’s share of renewable energy in electricity generation and its strong increase in the near future .
    [Show full text]
  • Investigation Into the Energy Consumption of a Data Center with a Thermosyphon Heat Exchanger
    Article Mechanical Engineering July 2011 Vol.56 No.20: 21852190 doi: 10.1007/s11434-011-4500-5 SPECIAL TOPICS: Investigation into the energy consumption of a data center with a thermosyphon heat exchanger ZHOU Feng, TIAN Xin & MA GuoYuan* College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China Received October 18, 2010; accepted February 17, 2011 A data center test model was used to analyze the energy dissipation characteristics and energy consumption of a data center. The results indicate that adequate heat dissipation from a data center cannot be achieved only from heat dissipation through the build- ing envelope during Beijing winter conditions. This is because heat dissipation through the building envelope covers about 19.5% of the total data center heat load. The average energy consumption for an air conditioner is 4 to 5 kW over a 24-h period. The temperature difference between the indoor and outdoor air for the data center with a thermosyphon heat exchanger is less than 20°C. The energy consumption of the thermosyphon heat exchanger is only 41% of that of an air conditioner. The annual energy consumption can be reduced by 35.4% with a thermosyphon system. In addition, the effect of the outdoor temperature on the en- ergy consumption of an air conditioner is greater than the indoor room temperature. The energy consumption of an air conditioner system increases by 5% to 6% for every 1°C rise in the outdoor temperature. data center, energy consumption, thermosyphon heat exchanger, ambient energy Citation: Zhou F, Tian X, Ma G Y.
    [Show full text]
  • Total Energy Consumption by Fuel, EU-27
    EN26 Total Primary Energy Consumption by Fuel Key message Fossil fuels continue to dominate total energy consumption, but environmental pressures have been reduced, partly due to a significant switch from coal and lignite to relatively cleaner natural gas in the 1990s. The share of renewable energy sources remains small despite an increase in absolute terms. Overall, total primary energy consumption increased by an average of 0.6 % per annum during the period 1990-2005 (9.8 % overall) thus counteracting some of the environmental benefits from fuel switching. Rationale The indicator provides an indication of the environmental pressures originating from energy consumption. The environmental impacts such as resource depletion, greenhouse gas emissions, air pollutant emissions and radioactive waste generation strongly depend on the type and amount of fuel consumed. Fig. 1: Total energy consumption by fuel, EU-27 1800 1600 1400 1200 Renewables Nuclear 1000 Coal and lignite Gas 800 Oil 600 400 Million tonnes of oil equivalents 200 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Data source: EEA, Eurostat (historic data) 1. Indicator assessment Total primary energy consumption in the EU-27 increased by 9.8 % between 1990 and 2005. Over the same period, the share of fossil fuels, including coal, lignite, oil and natural gas, in primary energy consumption declined slightly from 83 % in 1990 to 79.0 % in 2005, although fossil fuel consumption increased in absolute terms (by more than 4 %). The use of fossil fuels has considerable impact on the environment and is the main cause of greenhouse gas emissions.
    [Show full text]
  • Chapter 1: Energy Challenges September 2015 1 Energy Challenges
    QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 1: Energy Challenges September 2015 1 Energy Challenges Energy is the Engine of the U.S. Economy Quadrennial Technology Review 1 1 Energy Challenges 1.1 Introduction The United States’ energy system, vast in size and increasingly complex, is the engine of the economy. The national energy enterprise has served us well, driving unprecedented economic growth and prosperity and supporting our national security. The U.S. energy system is entering a period of unprecedented change; new technologies, new requirements, and new vulnerabilities are transforming the system. The challenge is to transition to energy systems and technologies that simultaneously address the nation’s most fundamental needs—energy security, economic competitiveness, and environmental responsibility—while providing better energy services. Emerging advanced energy technologies can do much to address these challenges, but further improvements in cost and performance are important.1 Carefully targeted research, development, demonstration, and deployment (RDD&D) are essential to achieving these improvements and enabling us to meet our nation’s energy objectives. This report, the 2015 Quadrennial Technology Review (QTR 2015), examines science and technology RDD&D opportunities across the entire U.S. energy system. It focuses primarily on technologies with commercialization potential in the mid-term and beyond. It frames various tradeoffs that all energy technologies must balance, across such dimensions as diversity and security of supply, cost, environmental impacts, reliability, land use, and materials use. Finally, it provides data and analysis on RDD&D pathways to assist decision makers as they set priorities, subject to budget constraints, to develop more secure, affordable, and sustainable energy services.
    [Show full text]
  • Router Energy Per Bit Router Energy Efficiency 10000
    Energy Considerations in Data Transmission and Switching Rod Tucker Department of Electrical & Electronic Engineering University of Melbourne Summary • Big‐picture view of data and energy in network & DCs • Snapshot of 2017 and projections for 2021 • Key energy bottlenecks – Access networks – Servers in data centers – Data storage – Switches and routers – Global optical transmission • Gap between technology limits and reality The Internet Storage Servers Switches Router Routers etc Global Data Core Network Base Center Station Switch Data Center Data Networks Center Metro/Edge Access Network Network Data Center Content Distribution OLT ONU Data Networks Router Center This talk Fiber Optical TX/RX Router Data usage in 2017 ‐ 1.5 Zettabytes >15 ? 12 Zettabytes/year 200 Tb/s 3200 Tb/s 800 Tb/s (40 %) 1.5x1021 bytes/year* Global 500 Tb/s (avg.) Data Core Network 135 kb/s (avg.) Center Data Center Data Networks Center Metro/Edge Access Network Network Data Center 300 Tb/s Content Distribution 3.7 billion users Data Networks (50 % of world pop.) Center 300 Tb/s (60 %) Sources: Cisco, VNI*, 2016‐2021, (2017); Google; Facebook; Akamai 2021 ‐ Twice as much data as 2017 > 40 ? 25 Zettabytes/year 300 Tb/s 6.4 Pb/s 1.6 Pb/s (30 %) 3.3x1021 bytes/year* Global 1Pb/s (avg.) Data Core Network 220 kb/s (avg.) Center Data Center Data Networks Center Metro/Edge Access Network Network Data Center 600 Tb/s Content Distribution 4.5 billion users Data Networks (60 % of world pop.) Center 700 Tb/s (70 %) Sources: Cisco, VNI*, 2016‐2021, (2017); Google; Facebook; Akamai Data, energy and efficiency Data (~ 25 % p.a.
    [Show full text]
  • New York City's Roadmap to 80 X 50
    New York City’s Roadmap to 80 to City’s Roadmap x 50 York New New York City’s Roadmap to nyc.gov/onenyc The City of New York #OneNYC Mayor Bill de Blasio @NYClimate Anthony Shorris Printed on 100% post-consumer recyled paper First Deputy Mayor New York City’s Roadmap to 80 x 50 is published pursuant to Local Law 66 of 2014. This report was produced by the New York City Mayor’s Office of Sustainability. This document was designed by Elisa Chaudet Cover Photo: Michael Appleton, Mayor’s Photography Office 80 x 50 Table of Contents Letter from the Mayor 3 Executive Summary 5 Introduction 15 Methodology 23 Energy 35 Buildings 55 Transportation 79 Waste 99 Actions New Yorkers Can Do 110 Next Steps 113 Glossary 117 Directory of Abbreviations 127 End Notes 129 nyc.gov/onenyc 80 x 50 1 80 x 50 Letter from the Mayor 2 80 x 50 nyc.gov/onenyc 80 x 50 Friends, Two years ago, I joined 400,000 others as we marched for action on climate change and committed that New York City would continue to lead by reducing greenhouse gases 80 percent by 2050, or 80 x 50. We detailed this commitment in our OneNYC report. Since that time, the nations of the world have come together to agree on a ground- breaking Paris Agreement, and just this month the world’s two biggest emitters, the US and China, committed to joining that agreement, putting it on a path toward ratification. Locally, we have continued to drive down our emissions, but we have much more to do.
    [Show full text]
  • Energy and Power Units and Conversions
    Energy and Power Units and Conversions Basic Energy Units 1 Joule (J) = Newton meter × 1 calorie (cal)= 4.18 J = energy required to raise the temperature of 1 gram of water by 1◦C 1 Btu = 1055 Joules = 778 ft-lb = 252 calories = energy required to raise the temperature 1 lb of water by 1◦F 1 ft-lb = 1.356 Joules = 0.33 calories 1 physiological calorie = 1000 cal = 1 kilocal = 1 Cal 1 quad = 1015Btu 1 megaJoule (MJ) = 106 Joules = 948 Btu, 1 gigaJoule (GJ) = 109 Joules = 948; 000 Btu 1 electron-Volt (eV) = 1:6 10 19 J × − 1 therm = 100,000 Btu Basic Power Units 1 Watt (W) = 1 Joule/s = 3:41 Btu/hr 1 kiloWatt (kW) = 103 Watt = 3:41 103 Btu/hr × 1 megaWatt (MW) = 106 Watt = 3:41 106 Btu/hr × 1 gigaWatt (GW) = 109 Watt = 3:41 109 Btu/hr × 1 horse-power (hp) = 2545 Btu/hr = 746 Watts Other Energy Units 1 horsepower-hour (hp-hr) = 2:68 106 Joules = 0.746 kwh × 1 watt-hour (Wh) = 3:6 103 sec 1 Joule/sec = 3:6 103 J = 3.413 Btu × × × 1 kilowatt-hour (kWh) = 3:6 106 Joules = 3413 Btu × 1 megaton of TNT = 4:2 1015 J × Energy and Power Values solar constant = 1400W=m2 1 barrel (bbl) crude oil (42 gals) = 5:8 106 Btu = 9:12 109 J × × 1 standard cubic foot natural gas = 1000 Btu 1 gal gasoline = 1:24 105 Btu × 1 Physics 313 OSU 3 April 2001 1 ton coal 3 106Btu ≈ × 1 ton 235U (fissioned) = 70 1012 Btu × 1 million bbl oil/day = 5:8 1012 Btu/day =2:1 1015Btu/yr = 2.1 quad/yr × × 1 million bbl oil/day = 80 million tons of coal/year = 1/5 ton of uranium oxide/year One million Btu approximately equals 90 pounds of coal 125 pounds of dry wood 8 gallons of
    [Show full text]
  • Thermophotovoltaic Energy in Space Applications: Review and Future Potential A
    Thermophotovoltaic energy in space applications: Review and future potential A. Datas , A. Marti ABSTRACT This article reviews the state of the art and historical development of thermophotovoltaic (TPV) energy conversion along with that of the main competing technologies, i.e. Stirling, Brayton, thermoelectrics, and thermionics, in the field of space power generation. Main advantages of TPV are the high efficiency, the absence of moving parts, and the fact that it directly generates DC power. The main drawbacks are the unproven reliability and the low rejection temperature, which makes necessary the use of relatively large radiators. This limits the usefulness of TPV to small/medium power applications (100 We-class) that includes radioisotope (RTPV) and small solar thermal (STPV) generators. In this article, next generation TPV concepts are also revisited in order to explore their potential in future space power applications. Among them, multiband TPV cells are found to be the most promising in the short term because of their higher conversion efficiencies at lower emitter temperatures; thus significantly reducing the amount of rejected heat and the required radiator mass. 1. Introduction into electricity. A few of them enable a direct conversion process (e.g. PV and fuel cells), but the majority require the intermediate generation A number of technological options exist for power generation in of heat, which is subsequently converted into electricity by a heat space, which are selected depending on the mission duration and the engine. Thus, many kinds of heat engines have been developed within electric power requirements. For very short missions, chemical energy the frame of international space power R&D programs.
    [Show full text]
  • U.S. Mining Industry Energy Bandwidth Study
    Contents Executive Summary.................................................................................................................1 1. Introduction..................................................................................................................5 2. Background ..................................................................................................................7 2.1 Mining Industry Energy Sources ...................................................................................7 2.2 Materials Mined and Recovery Ratio ............................................................................7 2.3 Mining Methods.............................................................................................................8 3. Mining Equipment.......................................................................................................9 3.1 Extraction.....................................................................................................................10 3.2 Materials Handling Equipment....................................................................................11 3.3 Beneficiation & Processing Equipment.......................................................................12 4. Bandwidth Calculation Methodology ......................................................................13 4.1 Method for Determining Current Mining Energy Consumption .................................14 4.2 Best Practice, Practical Minimum, and Theoretical Minimum Energy Consumption 16 4.3 Factoring
    [Show full text]