THE CRYSTAL STRUCTURE of ROXBYITE, Cu58s32

Total Page:16

File Type:pdf, Size:1020Kb

THE CRYSTAL STRUCTURE of ROXBYITE, Cu58s32 423 The Canadian Mineralogist Vol. 50, pp. 423-430 (2012) DOI : 10.3749/canmin.50.2.423 THE CRYSTAL STRUCTURE OF ROXBYITE, Cu58S32 WILLIAM G. MUMME§ AND ROBERT W. GABLE CSIRO Process Science and Engineering, Box 312, Clayton South, Victoria 3169, and School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia VÁCLAV PETŘÍČEK Institute of Physics, ASCR v.v.i., Na Slovance 2, CZ–182 21 Praha, Czech Republic ABSTRACT Roxbyite is triclinic, space group P1, with unit-cell dimensions a 13.4051(9), b 13.4090(8), c 15.4852(3) Å, a 90.022(2), b 90.021(2), g 90.020(3)°. The crystal structure was solved using 12190 independent intensity data with I > 4s(I), out of some 43652 unique reflections measured with a single-crystal diffractometer. There are 58 different Cu atoms and 32 different S atoms in the structure. Refinement using isotropic temperature-factors yielded Rw = 0.079. The number of parameters refined was 372. Because the crystal used is twelve-fold rotationally twinned about a, 12 twin-volume parameters were invoked. The structure was determined after transformation of an initial model obtained for a unit cell four times larger, also with space group P, with a 30.9625, b 30.9727, c 13.4051 Å, a 90.007, b 89.972, g 119.994° and with a composition Cu228S128. This larger cell, which was determined by the instrumental software during data collection, actually results from complicated multiple twinning of the true cell defined above. The structure of roxbyite is based on a hexagonal-close-packed framework of sulfur atoms with the copper atoms occupying these layers, all having triangular coordination. Other layers sandwiched between the close-packed sulfur layers consist purely of double, or split, layers of Cu atoms. Some of these Cu atoms have two-fold linear coordination, but mostly they have three- and four-fold coordination to the sulfur atoms in the close-packed layers that lie above and below them. The crystal structure of roxbyite bears a strong kinship to those of low chalcocite and djurleite. Keywords: roxbyite, crystal structure, multiple twins, low chalcocite, djurleite. INTRODUCTION P21/c, with a nearly orthogonal cell, a 26.897, b 15.745, c 13.565 Å, b 90.13°. Roxbyite, Cu1.74–1.82S, was reported as a new We have determined the crystal structure of roxbyite, copper sulfide mineral occurring in the Olympic Dam and report here the results of our investigation of the deposit at Roxby Downs, South Australia, by Mumme type-locality material. et al. (1988). A presumed close structural relationship with high and low chalcocite (Evans 1971, 1979b) EXPERIMENTAL DETAILS and djurleite Cu1.96 S (Evans 1979a, 1979b) was also discussed. The single-crystal Weissenberg X-ray films The crystal of roxbyite used to collect Weissenberg of roxbyite at first indicated an orthorhombic symmetry film data in 1988 was now used for (two) data collec- with a strong superimposed hexagonal pseudosym- tions using single-crystal diffractometers situated in the metry, but the presence of some intensity variations School of Chemistry, University of Melbourne. The between what would be equivalent reflections for an first was made using the Oxford Diffraction XcaliburS orthorhombic cell suggested that it is more probably difractometer. A total 93189 reflections were collected, monoclinic (C2/m, Cm or C2), with an orthogonal cell with 12424 unique and a Rmerge value of 0.24 for the having as parameters a 53.79, b 30.90, c 13.36 Å, b 90°. presumed monoclinic symmetry. Attempts were made A further reason for initially choosing this cell is that it to solve the structure in C2/m, with close-packed layers is related metrically to the unit cell of djurleite. Djurleite of sulfur atoms containing triangularly coordinated Cu had previously been found by Evans to be monoclinic atoms alternating with split Cu-only layers, as in the § E-mail address: [email protected] 424 THE CANADIAN MINerALOGIST structure of djurleite. As discussed, the close-packing c 13.4051 Å, a 90.007, b 89.972, g119.994° (a = b was originally assumed to be normal to a ≈ 53 Å. As 30.97, c = 13.41 Å, a = b 90°, g 120°) was chosen by this approach proved to be unsatisfactory, closer atten- the instrumental software (CRYSALISPRO 2010) as the tion was given to Patterson function calculations, which preferred cell rather than a monoclinic or orthorhombic indicated that the layering is more probably normal to cell. However, for hexagonal lattice type P, the Rint was the c ≈ 13 Å axis. very high (0.221), whereas the data analysis showed A partial structure still based on that of djurleite was that, of all the possible lattice-types raised, including determined, but with only four layers of close-packed hexagonal and C-centered monoclinic, the Rint = 0.076 sulfur, with Cu in triangular coordination interleaved for triclinic symmetry was lowest. With still some with four intermediate double (or puckered) layers of doubt about the true symmetry, we decided to continue Cu in more distorted three- and four-fold coordinations. the refinement with this triclinic cell, hopefully solve However, the limited number of reflection data with the structure in P1, and later test for possible higher respect to number of atoms (with only 1322 reflections symmetry. having I > 4sI) caused the refinement to stall, even though the Fourier maps calculated by JANA (Petříček DETERMINATION OF PART TWINNING IN ROXBYITE et al. 2006) were well defined, and suggested that the modeling was progressing in the right direction. It was now possible to progress from the previous At this stage, a second set of data (Table 1) was partial refinement in monoclinicC 2/m, transposed to the collected using the newly acquired Oxford Diffrac- new triclinic cell, by using large damping constraints, tion SuperNova diffractometer. Fewer data (82771 Fourier mapping and (there being eventually 356 atoms reflections) were collected, but with greatly improved in total) least-squares refinements in selected groups of counting statistics. Notably, for this cycle of data collec- atoms. The improvements in the R value agreements tion, the pseudohexagonal cell a 30.9625, b 30.9727, were invariably incremental, although Fourier mapping continued to give quite clear images of both the sulfur– copper framework and the intermediate copper layers. TABLE 1. ROXBYITE: DATA COLLECTION AND REFINEMENT DETAILS With R ≈ 0.40, and with a complete close-packed __________________________________________________________ network of sulfur (only) and about 75% of the possible Cu atoms identified, initially six-fold rotational twin- Ideal formula Cu58 S 32 ning about c was introduced to mimic any possibility Crystal data of hexagonal symmetry. Unit-cell parameters (triclinic cell) At the very first stage, the R agreement improved a, b, c (Å) 13.4090(8), 13.4051(9), 15.4852(3) considerably. It became possible to gradually improve á, â, ã (E) 90.022(2), 90.021(2), 90.020(3) the value to an R of 0.076, with 12190 reflections with Z 2 Space group P¯1 I > 4sI. As the six twin volumes varied considerably in –3 Calculated density 5.62 g cm magnitude, it seemed that the true symmetry of roxbyite Data collection is triclinic, and therefore we eventually refined the coordinates and isotropic temperature-factors of all the Temperature (K) 293 ë (CuKá, Å) 1.5418 atoms together with twelve twin parameters required Crystal size (mm) 0.174 × 0.10 × 0.03 for P1. Fourier mapping using the CONTOUR facility Collection mode omega scan, Äù = 1.0E Count time per frame 150 seconds in JANA was critical in eventually finding all the Cu 2èmax (E) 60.98 atoms. Cell parameters used for data collection At this stage, we had now determined a crystal a, b, c (Å) 30.9625, 30.9727, 13.4051 á, â, ã (E) 90.007, 89.972, 119.994 structure for roxbyite based on a triclinic, but nearly No. unique reflections 43652 equivalent hexagonal cell, P1, with a 30.962, b 30.973, No. reflections, I > 4ó(I) 12190 Absorption correction Gaussian (indexed crystal faces) c 13.045 Å, a 90.007°, b 89.972°, g 119.994°, which –1 contained 228 Cu and 128 S independent atoms. As ì (mm ) 34.2 Tmin 0.049 such, this structure was found to have the predicted Tmax 0.432 Rmerge (observed) 0.076 relationships to the structures of low and high chalcocite Refinement and djurleite based on hexagonal close-packing of sulfur No. of parameters refined 372 layers. However, rather than the original suggestion by Mumme et al. (1988) that the close-packing in roxbyite Rwobs, I > 4ó(I) 0.079 Rwobs, all data 0.079 GOF 2.40 is normal to the a axis (53 Å), i.e., approximately eight times the axis normal to close-packing in high chal- Twinning Twelve-fold rotation around a Twin-volume fractions 0.149(5), 0.0904(16), 0.0511(14), cocite, c = 6.72 Å, four times that in low chalcocite, 0.0731(16), 0.1059(17), 0.0315(14), c = 13.494 Å, and twice that in djurleite, a = 26.879 Å, 0.1532(18), 0.0509(14), 0.0896(16), the close-packing in this model of roxbyite was actu- 0.0745(16), 0.0298(14), 0.1012(17) 3 Äómin, Äó max (e/Å ) -2.66, +3.45 ally determined to be equivalent to that found in low __________________________________________________________ THE CRYSTAL STruCTure OF ROXBYITE 425 chalcocite, having only four close-packed layers per only 142 of the weaker I > 4sI reflections are discarded cell repeat along c. from the original 12190 (~1.0%) described by the twin domains in the structure determined for Cu228S128.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • PHASE CHANGES in Cu 2 S AS a FUNCTION of TEMPERATURE 1. PREVIOUS WORK
    National Bureau of Standards Special Publication 364, Solid State Chemistry, Proceedings of 5th Materials Research Symposium, issued July 1972. PHASE CHANGES IN cu2s AS A FUNCTION OF TEMPERATURE William R. Cook, Jr. Gould Inc., Gould Laboratories Cleveland, Ohio 44108 and Case Western Reserve University Cleveland, Ohio 44106 The high-'copper phase boundary of Cu2s deviates from stoichiometry above 300 °C, first becoming copper deficient, then above - 1075 °C becoming copper rich. The maximum copper content occurs at the monotectic temperature of 1104 °C. The strong effect of oxygen on the hexagonal-cubic transition in Cu2S was confirmed; the transition was also found to be sensi­ tive to the type of pretreatment of the material. The high temperature tetragonal "Cu1 96s" phase is stable between Cu1.95S and Cu2s, at temperatures of - 90° to - 140 °C. The tr~nsi­ tion to the tetragonal phase is extremely sluggish. The true composition of djurleite has been shown to be approximately Cu1.93S. The phases near the chalcocite-digenite region of the diagram may be grouped into those with hexagonal close packing of sulfur atoms and those with cubic close packing of sulfurs. This is important in understanding rates of transformation among the various phases that occur in this area of the diagram. Key words: Chalcocite; cu2s; digenite; djurleite; nonstoichiometry; phase relations. 1. PREVIOUS WORK Fairly thorough explorations of the Cu-s phase diagram between cu2s and cu1• ,shave been made by a number of previous workers [1-8] 1 The resulting diagram may be seen in figure 1 taken largely from Roseboom [7] and Riu [8].
    [Show full text]
  • SAMPLING for COBALT at BORNITE, ALASKA Ry Jeffrey Y
    SAMPLING FOR COBALT AT BORNITE, ALASKA Ry Jeffrey Y. Foley %*9 * * * * * * * * * * * * * * * * * * * * * Field Report - January, l9R 11. S. nEPARTMENT OF THE INTERIOR James S. Watt, Secretary BuREAuA OF MINES TARLE OF CONTENTS Page Introduction ................................................ Economic Geoloqy............................................ Work by the Bureau.......................................... Recommendations............................................. References ................................................. SAMDLING FOR cnRALT AT RORNITE, ALASKA By Jeffrey Y. Foley 1 INTRODIICTION Carrollite (CuCo2S4), an ore mineral of cobalt, is known to occur in the Ruby Creek Cu-Zn deposit at Bornite (fig. 1), in northwest Alaska (5, q). 2 The events leading to mineralization of dolomite and argillite units and the distribution of these rocks in the Bornite district are among the topics covered in a PhD discertation by M. W. Hitzman of Stan- ford University (in progress). Hitzman has identified carkollite and cobaltiferous pyrite at numerous intersections in diamond drill core belonging to Rear Creek Mining Corporation, the present operator of the property. A brief visit to collect bulk samples was made by a Bureau geologist in July, 19R1, as part of the Alaska Critical Metals program. ECONOMIC GEOLOGY Hitzman summarizes the distribution of cobalt as occurring: 1) "...as late cobaltiferous pyrite rims on earlier formed pyrite grains in pyritiferous, ferroan dolo- mite with disseminated sphalerite and massive siderite" 2) "...as carrollite in high-grade hornite, chalcocite, chalcopyrite, and sphalerite ore at higher levels in the deposit." 1 Geologist, U.S. Rureau of Mines, Alaska Field Operations Center, Fairbanks. 2 Underlined numbers in parentheses refer to items in the list of references at the end oF this report. ; - > . ; - .>;. -1,; g n/ /- ; > @ ! - xi #."R-: 3 2 vl- t 7:'i "^.
    [Show full text]
  • Article Benefited from Construc- Ering the Co Dominance Among the Non-Cu Metal Atoms, Tive Reviews by Jochen Schlüter and Taras Panikorovskii
    Eur. J. Mineral., 32, 637–644, 2020 https://doi.org/10.5194/ejm-32-637-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany Stuart J. Mills1, Uwe Kolitsch2,3, Georges Favreau4, William D. Birch1, Valérie Galea-Clolus5, and Johannes Markus Henrich6 1Geosciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria 4independent researcher: 421 Avenue Jean Monnet, 13090 Aix-en-Provence, France 5independent researcher: 10 rue Combe Noire, 83210 Solliès-Toucas, France 6independent researcher: Im Großen Garten 3, 57548 Kirchen (Sieg), Germany Correspondence: Stuart J. Mills ([email protected]) Received: 13 April 2020 – Revised: 30 October 2020 – Accepted: 9 November 2020 – Published: 25 November 2020 Abstract. The new mineral gobelinite, ideally CoCu4.SO4/2.OH/6 6H2O, is a new member of the ktenasite group and the Co analogue of ktenasite, ZnCu4.SO4/2.OH/6 6H2O.q It occurs at Cap Garonne (CG), Var, France (type locality), and Eisenzecher Zug (EZ), Siegerland, Northq Rhine-Westphalia, Germany (cotype lo- cality). The mineral forms pale green, bluish green or greyish green, blocky to thin, lath-like crystals. They are transparent and non-fluorescent, with a vitreous, sometimes also pearly, lustre and a white streak having a pale-green cast. Mohs hardness is about 2.5. The crystals are brittle with an irregular fracture; no cleav- age was observed.
    [Show full text]
  • Sediment-Hosted Copper Deposits of the World: Deposit Models and Database
    Sediment-Hosted Copper Deposits of the World: Deposit Models and Database By Dennis P. Cox1, David A. Lindsey2 Donald A. Singer1, Barry C. Moring1, and Michael F. Diggles1 Including: Descriptive Model of Sediment-Hosted Cu 30b.1 by Dennis P. Cox1 Grade and Tonnage Model of Sediment-Hosted Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Reduced-Facies Cu 30b.2 By Dennis P. Cox1 Grade and Tonnage Model of Reduced Facies Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Redbed Cu 30b.3, by David A. Lindsey2 and Dennis P. Cox1 Grade and Tonnage Model of Redbed Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Revett Cu 30b.4, by Dennis P. Cox1 Grade and Tonnage Model of Revett Cu by Dennis P. Cox1 and Donald A. Singer1 Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/ Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 345 Middlefield Road, Menlo Park, CA 94025 2 Box 25046, Denver Federal Center, Denver, CO 80225 Introduction This publication contains four descriptive models and four grade-tonnage models for sediment hosted copper deposits. Descriptive models are useful in exploration planning and resource assessment because they enable the user to identify deposits in the field and to identify areas on geologic and geophysical maps where deposits could occur.
    [Show full text]
  • Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona by Karen J. Wenrich1 , Earl R. Verbeek 1 , Hoyt B. Sutphin2 , Peter J. Modreski 1 , Bradley S. Van Gosen 11, and David E. Detra Open-File Report 90-0504 This study was funded by the Bureau of Indian Affairs in cooperation with the Hualapai Tribe. 1990 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. U.S. Geological Survey 2U.S. Pollution Control, Inc. Denver, Colorado Boulder, Colorado CONTENTS Page Abstract ................................................................... 1 Introduction ............................................................... 2 Geology and structure of the Ridenour mine ................................. 5 Structural control of the Ridenour and similar pipes ....................... 7 Mine workings ............................................................. 11 Geochemistry .............................................................. 11 Metals strongly enriched at the Ridenour pipe ......................... 23 Vanadium ......................................................... 23 Silver ........................................................... 30 Copper ........................................................... 30 Gallium .......................................................... 30 Isotopic studies ...................................................... 30 Mineralogy ...............................................................
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • USGS Open-File Report 03-107, V. 1.3, Database Record Pages
    DepositID 1 Cont AF NameDeposit Mehirize OtherNames Includes Country Code ALGR Algeria StateProvince Lat.Deg 33 Long.Deg 0 Dec.Lat 33.8472222 Lat.Min 50 Long.Min -20 Dec.Long -.341666667 Lat.Sec 50 Long.Sec -30 OreMmt CuGrade% CoGrade% AgGradeppm CuMmt Subtype Redbed Cu Age Cretaceous, Lower Aptian Ma 115 Unit HostRocks Green argillite, sandstone HangingwallBeds FootwallRocks Conglomerate Mineralogy Chalcocite, malachite TraceMinerals Comments Reference Caia, J. 1976, Paleogeographical and sedimentological controls of copper, lead, and zinc mineralization in the Lower Cretaceous sandstones of Africa: Economic Geology, V. 71, p. 409-422 DepositID 2 Cont AF NameDeposit Tansrift OtherNames Tamarift Includes Country Code MRCO Morocco StateProvince Lat.Deg 33 Long.Deg -4 Dec.Lat 33 Lat.Min 0 Long.Min -15 Dec.Long -4.25 Lat.Sec 0 Long.Sec 0 OreMmt 1 CuGrade%1.3 CoGrade% AgGradeppm CuMmt .013 Subtype Redbed Cu Age Cretaceous Ma 120 Unit HostRocks Red sandstone HangingwallBeds FootwallRocks Mineralogy TraceMinerals Comments Reference Caia, J. 1976, Paleogeographical and sedimentological controls of copper, lead, and zinc mineralization in the Lower Cretaceous sandstones of Africa: Economic Geology, V. 71, p. 409-422. Habashi F. and Bassyouni, F.A., 1982, Mineral resources of the Arab countries: Quebec, Chemecon Publishing Ltd.,Laval Univ., 2nd Edition.112 p. Kirkham, R.V, Carriere, J.J., Laramee, R.M., and Garson, D.F., 1994, Global distribution of sediment-hosted stratiform copper deposits and occurrences: Geological Survey of Canada Open File 2915b, 256 p. DepositID 3 Cont AF NameDeposit Tiloula OtherNames Includes Country Code ALGR Algeria StateProvince Lat.Deg 32 Long.Deg 0 Dec.Lat 32.85 Lat.Min 51 Long.Min -27 Dec.Long -.45 Lat.Sec 0 Long.Sec 0 OreMmt CuGrade% CoGrade% AgGradeppm CuMmt Subtype Redbed Cu Age Cretaceous, L.Aptian Ma 115 Unit HostRocks Green argillite, sandstone HangingwallBeds FootwallRocks Conglomerate Mineralogy Chalcocite, malachite TraceMinerals Comments Reference Caia, J.
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • Preliminary Model of Porphyry Copper Deposits
    Preliminary Model of Porphyry Copper Deposits Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey Preliminary Model of Porphyry Copper Deposits By Byron R. Berger, Robert A. Ayuso, Jeffrey C. Wynn, and Robert R. Seal Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Berger, B.R., Ayuso, R.A., Wynn, J.C., and Seal, R.R., 2008, Preliminary model of porphyry copper deposits: U.S. Geological Survey Open-File Report 2008–1321, 55 p. iii Contents Introduction.....................................................................................................................................................1 Regional Environment ...................................................................................................................................3
    [Show full text]
  • CRYSTAL STRUCTURE REFINEMENT of COVELLITE Rature Method Basedon 32 Samplingpoints Within (2) Least-Squaresrefinement in P6g/Mnc of Aniso- the Crystal
    American Mineralogist, Volume61, pages996-1N0, 1976 Crystalstructure refinement of covellite HowlRn T. EveNs,Jr. nNoJunrrH A. KonNenr U.S. GeologicalSuruey, Reston, Virginia 22092 Abstract : The crystal structure of covellite CuS [space Erotp P6"/mmc, a : 3.7938(5)4,c 16.341(l)Al hasbeen refined using 237 counter-measured (MoKa) intensitydata. The classic structureis confirmed,and z parametersdetermined as 0.10733(9) for Cu(2)and 0.06337(15) for S(2).The S-S bond lengthin the S, group is 2.071(4)A,and the Cu-S bond lengthsare 2.1905(2)Ain the CuSgtriangle and 2.302(1)(3 bonds),2.331(2)A in the CuSrtetrahedron. Introduction ville, Colorado,was of good quality as shownby precessionphotographs. The crystalstructure of covellite,CuS, was solved heavily exposed Buerger photographs 44 yearsago by Oftedal(1932). This structuredeter- These showed no trace of any Bragg glideplane mination is one of the classicsof the early era of reflectionsthat would violatethe c charac- group (or structureanalysis, and the atomic arrangement,al- teristicof the space P6r/mmc P6"mc),origi- (1932). though somewhatunusual from a crystal chemical nally determinedby Oftedal The cell dimen- point of view, has beenillustrated without further sions have been determinedby Potter and Evans powder questionin countlessreviews and textbookssince (1976)by least-squaresanalysis of datato be a : 3.7938(5)A, : 16.341(l)4.The crystal used for that time. The first attemptto verify the structureby " more modernmethods was madeby Berry (1954). intensitymeasurement was a plate0.021 by 0.045cm profiles His study,based on trial anderror adjustments using in.sizeand 0.00029cm thick.
    [Show full text]
  • Electron Diffraction Study of Phase Transformations in Copper Sulfides
    American Mineralogist, Volume 62, pages 107-l 14, 1977 Electron diffraction study of phasetransformations in coppersulfides ANonswPurNIs Departmentof Mineralogyand Petrology,Uniuersity of Cambridge DowningPlace, Cambridge C82 3EW, England Abstract The order-disordertransformation behavior of chalcociteand djurleite,and digeniteand anilitehas beenstudied by direct observationsof the transformationsin a transmission electronmicroscope. Chalcocite and djurleiterepresent low-temperature superstructures of the high-temperaturedisordered chalcocite subcell, and there need be no compositional differencebetween them. The djurleite superstructureis the more stable form at room temperature.The intermediatestructure in digeniteforms through modulatedstructures ratherthan throughtwinning. A metastable6a digenitetype superstructure,isochemical with anilite, forms on heating.This 6a superstructureis metastablerelative to the formation of anilite. Introduction cannotbe directlymeasured in this way,the courseof a transformationcan be followeddynamically, and For compositionsnear CurS a numberof phasesare subtle changeswhich would be very difficult to ob- known to existat room temperature.These may be serveby X-ray methodscan clearly be seen. dividedinto two broadcategories based on thenature of the sulfur close-packingin the structure:(1) I: The transformationbehavior of chalcociteand chalcociteand djurleitewith structuresbased on hex- djurleite agonal close-packingof sulfur atoms: (2) digenite- like structuresand anilitewith sulfur atomsin ap- Chalcociteis generallyconsidered to have a com- proximatelycubic close-packing.The low-temper- positionvery closeto CuzS,whereas djurleite, origi- aturephase relations have been summarized by Mori- nallythought to beCur.rrS (Roseboom, 1966; Takeda moto and Gyobu (1971)and Barton (1973).The et at., 1967a)is now consideredto be a solidsolution transformationbehavior of someof thesephases and with a compositionrange from about Cut.*S to the relationshipsbetween them havebeen studied by Cu' nzS(Mathieu and Rickert,1972; Potter, 1974).
    [Show full text]