The Behaviour of Native Copper in a Natural Environment
Total Page:16
File Type:pdf, Size:1020Kb
FI9900129 POSIVA 99-2 3 New data on the Hyrkkola U-Cu mineralization: The behaviour of native copper in a natural environment Nuria Marcos Helsinki University of Technology Laboratory of Engineering Geology and Geophysics Lasse Ahonen Geological Survey of Finland 30-4 / May 1 999 POSIVA OY Mikonkatu 15 A, FIN-OO1OO HELSINKI, FINLAND Phone (09) 2280 30 (nat.), ( + 358-9-) 2280 30 (int.) Fax (09) 2280 3719 (nat.), ( + 358-9-) 2280 3719 (int.) ISBN 951 -652-078-2 ISSN 1239-3096 The conclusions and viewpoints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva. - POSiVa Report Raportintunnus- Report code POSIVA 99-23 POSivaOy Julkaisuaika Date Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND Juikaisuaika- Date Puh. (09) 2280 30 - Int. Tel. +358 9 2280 30 May 1999 Tekija(t) - Author(s) Toimeksiantaja(t) - Commissioned by Nuria Marcos, Helsinki University of Technology D . ~ LasseAhonen, PosivaOy Geological Survey of Finland Nimeke-Title NEW DATA ON THE HYRKKOLA U-Cu MINERALIZATION: THE BEHAVIOUR OF NATIVE COPPER IN A NATURAL ENVIRONMENT Tiivistelma - Abstract The Hyrkkola Cu-U mineralization (SW Finland) is studied as an analogue to the behaviour of copper canister in crystalline bedrock. Uranium-native copper and uranium-copper corrosion products interactions are also addressed in this study. The integration of uranium series disequilibrium (USD) studies gives an estimate of the time-scales of the corrosion processes. The mineral assemblages native copper - copper sulfide, copper sulfides - copper iron sulfides, and native copper - copper oxide (cuprite) occur in open fractures at several depth intervals within granite pegmatites (GP). The surfaces of these open fractures have accumulations of uranophane crystals and other unidentified uranyl compounds. The secondary uranium minerals are mainly distributed around copper sulfide grains. Microscopic intergrowths of copper sulfides and uranyl compounds also have been observed. The surface of the fracture where native copper and cuprite occur is covered with uranium-rich smectite. The very low 234U/238U activity ratio (0.29 - 0.39) in the main uranium fraction in smectite indicates chemical stable conditions (e.g., oxidising) during at 234 5 least a time period comparable to the half-life of the U isotope (T1/2= 2.44 * 10 a). Groundwater samples were collected from intervals where copper minerals occur within open fractures. The Eh and pH conditions were measured during long-term pumping (2-4 weeks per sample). Eh was measured both in situ and an the surface using three electrodes (Pt, Au, C). The actual groundwater conditions are oxidising and would not allow the sulfidization of native copper. Sulfidization may be considered as an old phenomenon, older than the precipitation of uranyl phases in the samples. The end of sulfidization may be earlier than the precipitation and/or remobilisation of U(VI) phases in a time span from about 2 * 105 years (precipitation of uranophane) to 2.44 * 105 (remobilisation of U from smectite). Avainsanat - Keywords native copper, copper canister, corrosion, smectite, uranophane, redox, Hyrkkola ISBN ISSN ISBN 951-652-078-2 ISSN 1239-3096 Sivumaara - Number of pages Kieli - Language 78 English — Posivfl RPDOft Raportin tunnus-Report code POSIVA 99-23 Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND Julkaisuaika - Date Puh. (09) 2280 30 - Int. Tel. +358 9 2280 30 Toukokuu 1999 Tekijä(t) - Author(s) Toimeksiantaja(t) - Commissioned by Nuria Marcos, Teknillinen korkeakoulu Lasse Ahonen, Posiva Oy Geologian tutkimuskeskus Nimeke - Title HYRKKÖLAN U-Cu ANALOGIA: METALLISEN KUPARIN KÄYTTÄYTYMINEN LUONNOLLISESSA YMPÄRISTÖSSÄ Tiivistelmä -Abstract Hyrkkölän Cu-U mineralisaatiota on tutkittu analogiana kuparikanisterin käyttäytymiselle kiteisessä kallioperässä. Uraanin ja metallisen kuparin sekä uraanin ja kuparin korroosiotuotteiden vuoro- vaikutuksia on myös käsitelty tässä työssä. Uraanisarjan epätasapainotutkimusten (USD) avulla arvioitiin korroosioprosessien aikaskaalaa. Mineraaliseurueet luonnonkupari-kuparisulfidi, kuparisulfidi-kuparirautasulfidit ja luonnonkupari- kuparioksidi (kupriitti) esiintyvät avoraoissa useilla syvyyksillä graniittipegmatiiteissa (GP). Avorakojen pinnoilla on uranofaanikiteitä ja muita, tunnistamattomia uranyyliyhdisteitä. Sekundää- risiä uraanimineraaleja on pääasiallisesti kuparisulfidirakeiden ympärillä. Kuparisulfidien ja uranyyliyhdisteiden mikroskooppisia yhteenkasvettumia on myös havaittu. Metallista kuparia ja kuparioksidia sisältävää rakopintaa peittää uraanirikas smektiitti. Smektiitin uraanifraktion isotooppi- suhde 234U/238U on hyvin alhainen (0,29 - 0,39). Tämä viittaa siihen, että kemialliset olosuhteet tutkittujen rakomineraalien ympäristössä ovat pysyneet muuttumattomina (hapettavina); tähän 234 5 vaadittava aika on vähintään U-isotoopin puoliintumisajan suurusluokka (T]/2= 2.44 * 10 a). Kuparia sisältävistä raoista otettiin vesinäytteet. Veden Eh- ja pH-arvoja mitattiin pitkäaikaisten näyttenottopumppausten aikana (2-4 viikkoa/vesinäyte), redox-potentiaali niitattiin sekä in s itu- tilassa että maan pinnalla kolmea eri elektrodia käyttäen (Pt, Au, C). Nykyiset pohjavesiolosuhteet ovat hapettavat, jollaisissa metallisen kuparin sulfidoituminen ei ole mahdollista. Näytteissä havaittu kuparisulfidin muodostus on tapahtunut aikaisemmin kuin uranyylifaasien saostuminen. Sulfidoi- tuminen on päättynyt ennen U(VI)-faasien saostumista/uudelleenmobiloitumista, joka ajoittuu noin 2 * 105 vuoden (uranofaanin saostuminen) ja 2.44 * 105 vuoden (smektiitin U:n remobilisaatio) aikavälille. Avainsanat - Keywords metallinen kupari, kuparikanisteri, korroosio, smektiitti, uranofaani, redox, Hyrkkölä ISBN ISSN ISBN 951-652-078-2 ISSN 1239-3096 Sivumäärä - Number of pages Kieli - Language 78 Englanti TABLE OF CONTENTS Page Abstract 3 Tiivistelma 5 Preface 9 1 INTRODUCTION AND OBJECTIVES 11 2 GEOLOGY AND DESCRIPTION OF SITE STUDIES 13 2.1 Geological setting 13 2.2 Site studies 16 2.3 Mineralogy and geochemistry 17 3 POROSITY, OCCURRENCES OF COPPER MINERALS AND ASSOCIATED FRACTURE MINERALOGY 19 3.1 Analytical methods and Mineral composition 22 3.1.1 Native copper 22 3.1.2 Copper sulfides associated with native copper 24 3.1.3 Copper sulfides and copper-iron sulfides 26 3.1.4 Occurrences of uranyl compounds 30 3.1.5 Occurrence of copper oxide 35 3.2 Paragenesis 36 3.2.1 Source of sulfur 37 4 HYDROCHEMISTRY 39 4.1 Groundwater sampling, determinations, quality and representativeness 39 4.2 Results 42 4.2.1 Parameters monitored during pumping 42 4.2.2 Chemical characteristics of the groundwater samples 48 5 URANIUM SERIES ISOTOPE STUDIES OF ROCKS AND MINERALS 53 5.1 Rock/mineral samples and methods 54 5.2 Radiochemical data 54 6 SUMMARY AND DISCUSSION 55 7 CONCLUSIONS 59 ACKNOWLEDGEMENTS 60 REFERENCES 61 APPENDICES 65 APPENDIX A: Copper, uranium and trace element analysis of smectite (Sample Hy324/97.85) 67 APPENDIX B: Sequential extraction (SE) methods for smectite (Sample Hy324/97.85) 73 APPENDIX C: Preliminary results of research in the Interface Analysis Centre (University of Bristol, UK): implications for mineral-water interactions and for interpretation of the results obtained by sequential extraction (SE) methods 75 PREFACE This report presents the results of the Hyrkkola' native copper analogue studies (1997 -1998), a collaborative work between Posiva Oy (Finland) and the Swedish Nuclear Fuel and Waste Management Company (SKB). The contact persons were Margit Snellman at Posiva Oy and Lars Werme at SKB. 11 1 INTRODUCTION AND OBJECTIVES Studies in laboratory conditions and thermodynamic considerations have been applied to address the chemical stability of metallic copper as a canister material for spent nuclear fuel (e.g., Engman and Hermansson 1994, Ahonen 1995, and references therein). These studies describe well the behaviour of copper in simplified systems, while natural analogues are most suitable in assessing the long-term behaviour of copper in complex natural systems. The durability of copper also has been studied by means of its archaeological analogues, mainly bronzes, which have been preserved hundreds or thousand of years in near-surface environments (e.g. Hallberg et al. 1988, Miller et al. 1994, King 1995). Among the possible corrosion-resistant canister materials, metallic copper is the only one for which lifetime up to a billion years also can be indicated by means of natural analogues. The basalt-conglomerate-hosted native copper deposits at the Keweenaw Peninsula in Michigan were formed about 1.1 Ga ago, and metallic copper was the stable copper phase during the hydrothermal alteration of the deposit at a temperature of 100° to 200° C. According to Schwartz (1996), 'There is general agreement that the bulk of native copper has remained texturally stable since the Precambrian metamorphic-hydrothermal event that produced the mineralization. Neither sulfidization nor oxidation of native copper is of any importance". Many authors (e.g., Schwartz 1996, Amcoff 1998) have pointed out that the geological association of native copper deposits corresponds mainly to basalts and to the surpergene weathering of copper sulfide deposits and that the hydrogeochemical environment of those native copper occurrences differs from that expected in the planned deep nuclear waste repository. Amcoff (1998 p. 24) proposed that (op. cit) perhaps the common occurrences of chalcopyrite and other high temperature sulfide phases in glacial boulders constitute more interesting analogues, perhaps,