PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP- Karst Geothermal System in the Beijing-Tianjin-Hebei Plain of North China WANG Xinwei1, MAO Xiang1, JI Lu1, LIU Huiying1, LUO Lu1, LI Kewen2,3, LI Haiquan1 and HUANG Xu1 1 Sinopec Star Petroleum Corporation Limited, Beijing 100083, China 2 China University of Geosciences (Beijing), Beijing 100083, China 3 Stanford University, CA 94305-4007, USA
[email protected],
[email protected] Keywords: Karst geothermal reservoir, Geothermal system, Resource Evaluation, Beijing-Tianjin-Hebei Plain ABSTRACT The Beijing-Tianjin-Hebei Plain covers an area of about 87,000 km2. It is the main area for the development and utilization of carbonate Karst geothermal reservoirs in the central part of the Bohai Bay Basin, providing an accumulated heating area of more than 40 million m2. This paper presents a comprehensive study that covers aspects of reservoir-caprock assemblages, reservoir characteristics, water sources, migration pathways, and heat transfer modes of the Karst geothermal system in the Beijing-Tianjin-Hebei Plain. A conceptual model of medium-low temperature conductive aquifer system is established to representing the Karst geothermal system in the Beijing-Tianjin- Hebei Plain. It takes high geothermal heat flow of a large rift basin as background, atmospheric precipitations from Taihang and Yanshan mountains as recharge water sources, deep faults at basin margin and Karst unconformities as migration pathways. Geothermal water is heated up through deep circulations and accumulates within Karst reservoirs in the basement uplift zone. This geothermal system displays the following characteristics: (1) The water recharge area is close, but there are many migration pathways within the basin, and the migration distance is relatively long.