The Influences of Yellow River Flow-Sediment Regulation Field Experiments on the Salinity in the Bohai Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Functional Structure Convergence of China's Coastal Ports
sustainability Article The Functional Structure Convergence of China’s Coastal Ports Wei Wang 1,2,3, Chengjin Wang 1,* and Fengjun Jin 1 1 Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; [email protected] (W.W.); [email protected] (F.J.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Geography, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] Received: 6 September 2017; Accepted: 23 November 2017; Published: 28 November 2017 Abstract: Functional structure is an important part of a port system, and can reflect the resource endowments and economic development needs of the hinterland. In this study, we investigated the transportation function of coastal ports in China from the perspective of cargo structure using a similarity coefficient. Our research considered both adjacent ports and hub ports. We found that the transportation function of some adjacent ports was very similar in terms of outbound structure (e.g., Qinhuangdao and Huanghua) and inbound structure (e.g., Huanghua and Tangshan). Ports around Bohai Bay and the port group in the Yangtze River Delta were the most competitive areas in terms of outbound and inbound structure, respectively. The major contributors to port similarity in different regions varied geographically due to the different market demands and cargo supplies. For adjacent ports, the functional convergence of inbound structure was more serious than the outbound. The convergence between hub ports was more serious than between adjacent ports in terms of both outbound and inbound structure. The average similarity coefficients displayed an increasing trend over time. -
Chemical and Isotopic Constraints on Evolution of Groundwater Salinization in the Coastal Plain Aquifer of Laizhou Bay, China ⇑ D.M
Journal of Hydrology 508 (2014) 12–27 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China ⇑ D.M. Han a, , X.F. Song a, Matthew J. Currell b, J.L. Yang c, G.Q. Xiao c a Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China b School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne 3001, Australia c Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China article info summary Article history: A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides Received 19 June 2013 new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and Received in revised form 28 September 2013 brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of Accepted 26 October 2013 depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for Available online 1 November 2013 salt production in the north. Groundwater is characterized by hydrochemical zonation of water types This manuscript was handled by Corrado Corradini, Editor-in-Chief, with the (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water assistance of Michel Bakalowicz, Associate bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing Editor lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. -
Bohai Bay, China, Field Trip Report 2012
RED KNOT NORTHWARD MIGRATION THROUGH BOHAI BAY, CHINA, FIELD TRIP REPORT APRIL - JUNE 2013 Chris Hassell Adrian Boyle Matt Slaymaker Ying Chi Chan and Theunis Piersma © A. Boyle Red Knot NoBrothhwaai rBda My iNgorarthionwa Thrd rMoughigra tBionoh Raie Bpoayrt, ACphrinil a&, FMieayld 20Tr10ip Report April - June 2013 2 Contents 3 Summary Introduction 4 The Study Site 5 Marking of Shorebirds Human Use of the Mudflats 6 Field work in 2013 10 Internationally Important Counts 11 Use of the Mudflats and Resighting Coverage 13 Presence of rogersi and piersmai subspecies 14 Abdominal Profiles 15 Habitat Destruction Salt Ponds Nordmann’s Greenshank Tringa guttifer 16 Spoon-billed Sandpiper Eurynorhynchus pygmeus New Zealand Red Knots Media The Future of Research 17 Passerine Migration Acknowledgments 18 Collaborative partners References Appendix 1 20 Individual Life Histories Appendix 2 22 Securing the Luannan Coast Appendix 3 25 The Importance of Salt Pond Habitat to Migratory Shorebirds at Nanpu Salt Works, Bohai Bay China Appendix 4 28 Spoon-billed Sandpiper sightings in Northern Bohai Bay Appendix 5 29 New Zealand Red Knot in Bohai Bay, China Appendix 6 31 Media links Appendix 7 32 Bird List 2 Red Knot Northward Migration Through Bohai Bay, China, Field Trip Report April - June 2013 Summary The fieldwork season commenced on 9 April and finished on 6 June 2013. We recorded 4,615 marked shorebirds from throughout the East Asian-Australasian Flyway (EAAF). Included in the total flag sightings were 873 that we could identify to an individual bird, within those were 613 sightings of colourbanded birds from North West Australia (NWA), the main focus of this study, and this gave us 285 individually recognizable individuals. -
49232-001: Beijing-Tianjin-Hebei Air Quality Improvement Program
Beijing–Tianjin–Hebei Air Quality Improvement–Hebei Policy Reforms Program (RRP PRC 49232) SECTOR ASSESSMENT: ENVIRONMENT (AIR POLLUTION) Sector Road Map A. Sector Performance, Problems, and Opportunities 1. Air pollution problems in the PRC. Decades of unsustainable economic growth in the People’s Republic of China (PRC) have resulted in severe degradation of the air, water and soil quality throughout the country. In 2014, 74 of PRC’s prefecture-level and higher level cities recorded annual concentrations of fine particulate matter (PM2.5) exceeding the national standard of 35 micrograms per cubic meter (µg/m3) by 83%, with 7 of the 10 most polluted cities in the PRC located in the Beijing-Tianjin-Hebei (BTH) region.1 High levels of air pollution are among the first environmental problems that the PRC’s leadership has addressed with an unprecedented scale of reforms and actions which include the first “Action Plan of Pollution Prevention and Control” (hereinafter CAAP) outlining targets to be achieved in 2013–2015 in key regions, a new vision for the PRC’s urbanization which emphasizes improved ecological environment in cities, and a new environmental protection law unleashing long-needed reforms in the government performance assessment system. 2. Air quality and emissions in Hebei Province. Hebei province (Hebei) surrounds Beijing and Tianjin Municipalities, bordering Bohai bay to the east. Despite its advantageous geographical position, Hebei’s resources driven and heavy industry based economy has made the province lag behind other coastal provinces like Jiansgu and Zhejiang in terms of gross domestic product (GDP) and overall economic performance. In 2014, Hebei’s GDP totaled CNY2.94 trillion with a per capita GDP of CNY39,846. -
Bohai-Sea-Sustainable-Development
BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY 2 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY TABLE OF CONTENTS List of Acronyms and Abbreviations . iv List of Tables . v List of Figures . v Preface . vi x Acknowledgements . vii xx Foreword . 1 1 Overview of Bohai Sea . 9 The Value of Bohai Sea . 15 15 Threats and Impacts . 25 25 Our Response . 33 33 Principles and Basis of the Strategy . .41 41 The Strategies . .47 47 Communicate . 49 49 Preserve . 53 53 Protect . 57 57 Sustain . 63 63 Develop . 66 66 Executing the Strategy . 75 75 References . 79 79 iii3 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF A CRONYMS AND A BBREVIATIONS BSAP – Blue Sea Action Plan BSCMP – Bohai Sea Comprehensive Management Program BSEMP – Bohai Sea Environmental Management Project BS-SDS – Bohai Sea – Sustainable Development Strategy CNOOC – China National Offshore Oil Corp. CPUE – catch per unit of effort GDP – Gross Domestic Product GIS – Geographic Information System GPS – Global Positioning System ICM – Integrated Coastal Management MOA – Ministry of Agriculture MOCT – Ministry of Communication and Transportation PEMSEA – GEF/UNDP/IMO Regional Programme on Partnerships in Environmental Management for the Seas of East Asia RS – Remote sensing SEPA – State Environmental Protection Administration SOA – State Oceanic Administration iv4 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF TABLES Table 1. Population Growth in the Bohai Sea Region (Millions) . 11 Table 2. Population Density of the Bohai Sea Region and Its Coastal Areas . -
Characteristics of the Bohai Sea Oil Spill and Its Impact on the Bohai Sea Ecosystem
Article SPECIAL TOPIC: Change of Biodiversity Patterns in Coastal Zone July 2013 Vol.58 No.19: 22762281 doi: 10.1007/s11434-012-5355-0 SPECIAL TOPICS: Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem GUO Jie1,2,3*, LIU Xin1,2,3 & XIE Qiang4,5 1 Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai 264003, China; 2 Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai 264003, China; 3 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 4 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 5 Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China Received April 26, 2012; accepted June 11, 2012; published online July 16, 2012 In this paper, ENVISAT ASAR data and the Estuary, Coastal and Ocean Model was used to analyze and compare characteristics of the Bohai Sea oil spill. The oil slicks have spread from the point of the oil spill to the east and north-western Bohai Sea. We make a comparison between the changes caused by the oil spill on the chlorophyll concentration and the sea surface temperature using MODIS data, which can be used to analyze the effect of the oil spill on the Bohai Sea ecosystem. We found that the Bohai Sea oil spill caused abnormal chlorophyll concentration distributions and red tide nearby area of oil spill. ENVISAT ASAR, MODIS, oil spill, chlorophyll, sea surface temperature Citation: Guo J, Liu X, Xie Q. -
M Info Poll the Pen Exte in M Not Was Law Crew Por Not Smo Inve Ber in O
Circular Ref No.: PNI1509 Date: 05 Nov2015 Dear Sir or Madam, Subject: Administrative Penalties on Vessels for Discharging Waste and Sewage in Bohai Bay, China Background Recently, our local offices in northern China have noted an increased number of cases concerning vessels being fined by local Maritime Safe Administration (“MSA”) for discharging garbage/sewage in Bohai Bay, China.Acccording to our information, local MSA has enhanced supervision of discharging garbage or pollutants in Bohai Bay. According to Marine Environment Protection Law of the People’s Republic of China, offenders in this respect are subject to a penalty ranging from RMB20,000 to RMB200,000 depending on different extent of violation. In most cases, when attending on board for PSC inspection, MSA officers noticed the vessel’s record of discharging garbage or sewage when the vessel was in Bohai Bay which was considered to be a breach of relevant Chinese laws and regulations. MSA wouldthen make investigation, take statement from crewmembers and issue administrative penaltynotice to the vessel.At most ports security are usually provided to MSA before MSA issues formal penalty notice guaranteeing payment of the penalty in order to ensure the vessel’s smooth departure. However, if the vessel’s schedule was delayeed by MSA for investigationwithout cargo operation, the vessel may also face non-production berth usage claim from the terminal. In order to help ship owners and operators understand the situation and avoid such penalty and relevant costs, we hereby prepared this circulaar. BohaiBay Bohai Bay area, located in the northeast coast of China, is a nearly enclosed inland sea. -
Trade Marks Journal No: 1912 , 29/07/2019 Class 99 1495370 10
Trade Marks Journal No: 1912 , 29/07/2019 Class 99 1495370 10/10/2006 ANNCO, INC. 7 TIMES SQUARE, NEW YORK, NY 10036 USA. A CORPORATION ORGANISED AND EXISTING UNDER THE LAWS OF THE STATE OF DELAWARE, USA, Address for service in India/Attorney address: INVENTURE IP G-13, LOWER GROUND FLOOR, NIZAMUDDIN WEST, NEW DELHI-110013 Proposed to be Used DELHI Cl.14;PRECIOUS METALS AND THEIR ALLOYS AND GOODS IN PRECIOUS METALS OR COATED THEREWITH, NOT INCLUDED IN OTHER CLASSES; JEWELLERY, PRECIOUS STONES; HOROLOGICAL AND OTHER CHRONOMETRIC INSTRUMENTS Cl.25;CLOTHING AND HEADGEAR, NOT INCLUDING FOOTWEAR 6655 Trade Marks Journal No: 1912 , 29/07/2019 Class 99 SCOTT 2062638 02/12/2010 SCOTT TECHNOLOGIES, INC 4320 Goldmine Road, Monroe, North Carolina, 28110, United States of America . A DELWARE CORPORATION Address for service in India/Attorney address: REMFRY & SAGAR REMFRY HOUSE AT THE MILLENNIUM PLAZA SEC 27, GURGAON 122009, NEW DELHI NATIONAL CAPITAL REGION INDIA Proposed to be Used DELHI Cl.7;PRESSURIZING RESPIRATORY BREATHING AIR CYLINDERS USED BY EMERGENCY PERSONNEL, COMPRISING AN AIR COMPRESSOR ASSEMBLY, DRIVE MOTOR, AIR STORAGE CYLINDERS, AND AUTOMATIC CONTROLS Cl.9;SELF CONTAINED BREATHING APPARATUS: SYSTEM DESIGNED FOR MEASURING AND ANALYZING AIR FOR BREATHING; THERMAL IMAGING CAMERAS; COMMUNICATION DEVICES: SAFETY GARMENTS FOR USE BY FIREFIGHTERS, INDUSTRIAL WORKERS, FIRST RESPONDERS, AND MILITARY PERSONNEL; STATIONARY AND MOBILE AIR CHARGING STATIONS: PERSONNEL LOCATOR SYSTEM; PERSONAL ALERT SAFETY SYSTEM; GAS MASKS; PORTABLE AND FIXED GAS DETECTION, FLAME DETECTION; PROTECTIVE CLOTHING AND HEADGEAR; AIRLINE BREATHING APPARATUS; HEARING PROTECTION; INDUSTRIAL SAFETY EVE PROTECTION: TELECOMMUNICATIONS AND DATA NETWORKING HARDWARE, NAMELY, DEVICES FOR TRANSPORTING AND AGGREGATING VOICE, DATA, AND VIDEO CORNMUNICATIONS ACROSS MULTIPLE NETWORK INFRASTNICTURES AND COMMUNICATIONS PROTOCOLS; ASSET MANAGEMENT AND TRACKING SYSTEMS: SOFTWARE FOR GAS AND FILTER SELECTION MANAGEMENT; FACE MASKS FOR BREATHING (NOT FOR MEDICAL USE); RESPIRATORS.. -
Download Article
International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013) Coastline Remote Sensing Monitoring and Change Analysis of Laizhou Bay from 1978 to 2009 Weifu Sun Weifu Sun, Jie Zhang, Guangbo Ren, Yi Ma, Shaoqi Ni Ocean University of China First Institute of Oceanography Qingdao, China Qingdao, China [email protected] [email protected] Abstract—Coastline of Laizhou Bay was affected by natural [19]; Zhuang Zhenye et al. studied sand shore erosion of and anthropogenic factors and changed severely in the last 31 eastern Laizhou Bay [20]. Overall, the researchers studied only years. It has great significance to monitor Laizhou Bay coastline partial regions of Laizhou Bay, but not gave the whole change for coastal zone protection and utilization. Based on the situation of coastal Change of Laizhou Bay. extraction of coastline information by selecting 8 remotely sensed In this paper, Landsat images in the year of 1978, 1989, images of MSS and TM in the year of 1978, 1989, 2000 and 2009, changes of coastline of Laizhou Bay is analyzed. The results show 2000 and 2009 were collected to extract coastline information that: (1) The whole coastline of Laizhou Bay kept lengthening by human-machine interaction method. Based on the results of with the speed of 6.04 km/a; (2) The coastline moved 959.2241 4 periods’ coastline extraction, this paper analyzed movement km2 seaward and 0.4934 km2 landward, that is, 958.7307 km2 of coastline and transformation of coastline types. Base on the land area increased in total; (3) Transformation of coastline types results, change factors of the coastline are analyzed. -
Cereal Series/Protein Series Jiangxi Cowin Food Co., Ltd. Huangjindui
产品总称 委托方名称(英) 申请地址(英) Huangjindui Industrial Park, Shanggao County, Yichun City, Jiangxi Province, Cereal Series/Protein Series Jiangxi Cowin Food Co., Ltd. China Folic acid/D-calcium Pantothenate/Thiamine Mononitrate/Thiamine East of Huangdian Village (West of Tongxingfengan), Kenli Town, Kenli County, Hydrochloride/Riboflavin/Beta Alanine/Pyridoxine Xinfa Pharmaceutical Co., Ltd. Dongying City, Shandong Province, 257500, China Hydrochloride/Sucralose/Dexpanthenol LMZ Herbal Toothpaste Liuzhou LMZ Co.,Ltd. No.282 Donghuan Road,Liuzhou City,Guangxi,China Flavor/Seasoning Hubei Handyware Food Biotech Co.,Ltd. 6 Dongdi Road, Xiantao City, Hubei Province, China SODIUM CARBOXYMETHYL CELLULOSE(CMC) ANQIU EAGLE CELLULOSE CO., LTD Xinbingmaying Village, Linghe Town, Anqiu City, Weifang City, Shandong Province No. 569, Yingerle Road, Economic Development Zone, Qingyun County, Dezhou, biscuit Shandong Yingerle Hwa Tai Food Industry Co., Ltd Shandong, China (Mainland) Maltose, Malt Extract, Dry Malt Extract, Barley Extract Guangzhou Heliyuan Foodstuff Co.,LTD Mache Village, Shitan Town, Zengcheng, Guangzhou,Guangdong,China No.3, Xinxing Road, Wuqing Development Area, Tianjin Hi-tech Industrial Park, Non-Dairy Whip Topping\PREMIX Rich Bakery Products(Tianjin)Co.,Ltd. Tianjin, China. Edible oils and fats / Filling of foods/Milk Beverages TIANJIN YOSHIYOSHI FOOD CO., LTD. No. 52 Bohai Road, TEDA, Tianjin, China Solid beverage/Milk tea mate(Non dairy creamer)/Flavored 2nd phase of Diqiuhuanpo, Economic Development Zone, Deqing County, Huzhou Zhejiang Qiyiniao Biological Technology Co., Ltd. concentrated beverage/ Fruit jam/Bubble jam City, Zhejiang Province, P.R. China Solid beverage/Flavored concentrated beverage/Concentrated juice/ Hangzhou Jiahe Food Co.,Ltd No.5 Yaojia Road Gouzhuang Liangzhu Street Yuhang District Hangzhou Fruit Jam Production of Hydrolyzed Vegetable Protein Powder/Caramel Color/Red Fermented Rice Powder/Monascus Red Color/Monascus Yellow Shandong Zhonghui Biotechnology Co., Ltd. -
Coastal Economic Vulnerability to Sea Level Rise of Bohai Rim in China
Nat Hazards (2016) 80:1231–1241 DOI 10.1007/s11069-015-2020-3 ORIGINAL PAPER Coastal economic vulnerability to sea level rise of Bohai Rim in China 1 1 1 Ting Wu • Xiyong Hou • Qing Chen Received: 18 August 2015 / Accepted: 10 October 2015 / Published online: 22 October 2015 Ó Springer Science+Business Media Dordrecht 2015 Abstract Through index-based method, the coastal economic vulnerability of Bohai Rim in China to the hypothetical local scenario of 1-m relative sea level rise by the end of twenty-first century was assessed (note that 1-m global sea level rise throughout the twenty-first century is highly improbable). Both physical and socioeconomic variables were considered, and the comparison between physical vulnerability and economic vul- nerability was conducted to identify effects of socioeconomic variables on coastal sus- ceptibility to sea level rise. The assessment was carried out at shoreline segments scale as well as at county-level scale, and the results were as follows: The combination of geo- morphology and terrain plays the determinant role, since the gently sloped coasts with softer substances are always both physical and economic susceptible to the projected inundation scenario; potential displaced population and GDP loss have more influence on economic vulnerability than reclamation density in that the most intensively reclaimed areas are not always high vulnerable, while the areas that may suffer from the largest potential displaced population and GDP loss are always high vulnerable; the method employed in this study is sensitive in identifying the relative difference in economic vulnerability; moreover, it is capable of handling the issues caused by mutual offset effects between land-controlling impacts and marine-controlling impacts. -
Inversion of the Degradation Coefficient of Petroleum
Journal of Marine Science and Engineering Article Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay Shengmao Huang 1,2, Haiwen Han 1,2, Xiuren Li 1,2, Dehai Song 1,2 , Wenqi Shi 3, Shufang Zhang 3,* and Xianqing Lv 1,2,* 1 Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology (CIMST), Ocean University of China, Qingdao 266100, China; [email protected] (S.H.); [email protected] (H.H.); [email protected] (X.L.); [email protected] (D.S.) 2 Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China 3 National Marine Environment Monitoring Center, Dalian 116023, China; [email protected] * Correspondence: [email protected] (S.Z.); [email protected] (X.L.) Abstract: When petroleum hydrocarbon pollutants enter the ocean, besides the migration under hydrodynamic constraints, their degradation due to environmental conditions also occurs. However, available observations are usually spatiotemporally disperse, which makes it difficult to study the degradation characteristics of pollutants. In this paper, a model of transport and degradation is used to estimate the degradation coefficient of petroleum hydrocarbon pollutants with the adjoint method. Firstly, the results of a comprehensive physical–chemical–biological test of the degradation of petroleum hydrocarbon pollutants in Laizhou Bay provide a reference for setting the degrada- tion coefficient on the time scale. In ideal twin experiments, the mean absolute errors between observations and simulation results obtain an obvious reduction, and the given distributions can be Citation: Huang, S.; Han, H.; Li, X.; inverted effectively, demonstrating the feasibility of the model.