Hicksbeachia Pilosa Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Hicksbeachia Pilosa Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Hicksbeachia pilosa Click on images to enlarge Family Proteaceae Scientific Name Hicksbeachia pilosa P.H.Weston Weston, P.H. (1989) Telopea 3(2): 236. Type: QUEENSLAND: Cook: Bobbin Bobbin Falls, 17 deg 22 S 145 deg 46 E, P.H. Weston 959, G. Sankowsky & P. Hind, 23.8.1986.Holo: NSW; iso: BRI, QRS. Cauliflorous flowers. Copyright CSIRO Common name Red Bauple Nut; Ivory Silky Oak Stem Seldom exceeding 30 cm dbh. Oak grain in the wood and a corresponding pattern in the inner blaze. Leaves Oak grain in the twigs. Leaves large, about 34-90 cm, with about 7-35 lobes or leaflets. Lobes or leaflet blades about 10-40 x 2.5-7 cm, thick and stiff, arched between the lateral veins; marginal teeth quite stiff and sharp. Leaflet stalks very short or absent. Terminal buds and very young shoots densely clothed in dark Cauliflorous fruit and flowers. Copyright B. Gray brown hairs. Flowers Flowers in pairs, sessile on a common peduncle. Tepals about 20 mm long, +/- cream inside but pink, red or purplish outside. Hypogynous glands +/- globular, four. Ovary sessile, hairy, ovules 2. Flowers at anthesis have a sweet, mouse-like odour. Fruit Fruit, side view and cross section. Copyright W. T. Cooper Fruit bright shiny red (scarlet) about 3-5 x 2.5-3 cm. Seeds about 2.5-3 x 1.5-2 cm. Fruit borne on the trunk and branches. Seedlings Cotyledons without any obvious venation. First pair of true leaves coarsely toothed. At the tenth leaf stage: leaf blade +/- elliptic, margin conspicuously toothed, midrib raised on the upper surface, hairy on both the upper and lower surfaces at least when young; terminal bud densely clothed in brown hairs. Seed germination time 19 to 52 days. Distribution and Ecology Endemic to NEQ. Altitudinal range from sea level to 800 m. Grows as an understory tree in well developed Scale bar 10mm. Copyright CSIRO lowland and upland rain forest on a variety of sites. Natural History & Notes The seeds of this species are occasionally eaten in North East Queensland but caution should be exercised as HCN has been found in the seeds of a closely related species Hicksbeachia pinnatifolia. Everist (1974). A slender tree with very good potential for the garden. The large pinnate leaves, the interesting sweetly perfumed flowers from the stem and the bright pink to red fruits are all desirable features. Shrub (woody or herbaceous, 1-6 m tall) X Cotyledon stage, hypogeal germination. Copyright CSIRO Tree X RFK Code 416 CC-BY Australian Tropical Herbarium unless otherwise indicated in the images. Seedling with cotyledons and 6 leaves, hypogeal germination. Copyright CSIRO Cotyledon and 1st leaf stage, hypogeal germination. Copyright CSIRO.
Recommended publications
  • Approved NSW & National Recovery Plan Eidothea Hardeniana
    Approved NSW & National Recovery Plan Eidothea hardeniana September 2004 © Department of Environment and Conservation (NSW), July 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Nightcap Oak are best directed to: The Nightcap Oak Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Lesley Elkan © Botanic Gardens Trust, Sydney Cover illustration: Adult and juvenile leaves and fruit of Eidothea hardeniana This plan should be cited as follows: NSW Department of Environment and Conservation 2004, Recovery Plan for the Nightcap Oak (Eidothea hardeniana), Department of Environment and Conservation (NSW), Hurstville. ISBN 0 7313 6781 2 Recovery Plan The Nightcap Oak Recovery Plan for the Nightcap Oak (Eidothea hardeniana) Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation (NSW), which incorporates the New South Wales National Parks and Wildlife Service. Responsibility for the preparation of Recovery Plans now rests with this new department. This document constitutes the New South Wales State and National Recovery Plan for Eidothea hardeniana Weston & Kooyman (Nightcap Oak), and as such considers the conservation requirements of the species across its range.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Threatened Species of Wilsons and Coopers Creek
    Listed below are species recorded from the project areas of Goonengerry Landcare and Wilsons Creek Huonbrook Landcare groups. Additional species are known from adjacent National Parks. E = Endangered V = Vulnerable BCA - Biodiversity Conservation Act 2016 EPBC - Environment Protection and Biodiversity Conservation Act 1999 Threatened Species of Wilsons and Coopers Creek SOS - Saving our Species Scientific name Common name TSC Act status EPBC Act status SOS stream Wilsons Creek and Coopers Creek are tributaries of the Wilsons River on the Far North Coast of New South Wales. Within the South East Queensland Bioregion, the native flora and fauna of PLANTS this region are among the most diverse in Australia. In the catchment areas of the Wilsons and Corokia whiteana Corokia V V Keep watch Coopers Creek 50 threatened species of flora and fauna can be found and 2 endangered Davidsonia johnsonii Smooth Davidson's Plum E E Site managed ecological communities. Desmodium acanthocladum Thorny Pea V V Site managed What is a threatened species? Diploglottis campbellii Small-leaved Tamarind E E Site managed Plants and animals are assessed on the threats that face them and the level to which they are at Doryanthes palmeri Giant Spear Lily V Keep watch risk of extinction. If the risk is high they are listed in legislation and conservation actions are Drynaria rigidula Basket Fern E Partnership developed for their protection. There are almost 1000 animal and plant species at risk of Elaeocarpus williamsianus Hairy Quandong E E Site managed extinction in NSW. Endiandra hayesii Rusty Rose Walnut V V Data deficient A species is considered threatened if: Endiandra muelleri subsp.
    [Show full text]
  • Fossil Fruit of the Macadamieae (Proteaceae) in the Tertiary of Eastern Australia: Eureka Gen
    Memoirs of the Queensland Museum | Nature 55(1) © The State of Queensland (Queensland Museum) 2010 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site http://www.qm.qld.gov.au/About+Us/Publications/Memoirs+of+the+Queensland+Museum A Queensland Government Project Typeset at the Queensland Museum Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov. Mary E. DETTMANN H. Trevor CLIFFORD Queensland Museum, Geosciences, Hendra Facility, 122 Gerler Rd, Hendra, Qld 4011, Australia. Email: [email protected] Citation: Dettmann, M.E. & Clifford, H.T. 2010 03 15. Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov.. Memoirs of the Queensland Museum — Nature 55(1): 147-166. Brisbane. ISSN 0079-8835. Accepted: 13 October 2009. ABSTRACT Eureka gen. nov. is proposed to accommodate fossil fruits recovered from several mid- Tertiary (early Oligocene-Miocene) sites in eastern Australia. The type (E.
    [Show full text]
  • Associations of Societies for Growing Australian Plants
    Page 1 Associations of Societies for Growing Australian Plants – Rainforest Study Group – No.62 (7) June 2006 Associations of Societies for Growing Australian Plants ASGAP Rainforest Study Group NEWSLETTER No 62. (7) June 2006 ISSN 0729-5413 Annual Subscription $5, $10 overseas Photos: www.web-a-file.com Study Group Webpage (under construction): http://farrer.csu.edu.au/ASGAP/rainfor.html Email: [email protected] Address: Kris Kupsch, 28 Plumtree Pocket, Burringbar, Australia, 2483. Ph. (02) 66771466 Mob. 0439557438 Introduction ASGAP trip to Sydney Nov 2005 It has been a long while since I wrote a During my brief visit to Sydney in November newsletter, I apologise for taking so long. last year as part of an invitation to speak at a Since the last newsletter the family and I have SGAP meeting in Ermington, I got to do the moved back to the Wet Tropics. I now work following: as an Environmental Scientist undertaking 1. I was escorted by Cas Liber, ASGAP vegetation surveys and compiling Banksia Study Group leader. Cas environmental management plans for parts of toured me through the Botanic the Wet Tropics World Heritage Area. This Gardens, his garden, among others. has been a rather large transition, leaving Many thanks to Cas and his family. behind my garden and all of my immediate 2. I visited Betty Rymers garden at plans in NSW; the job was too good to refuse. Kenthurst. Betty has a notable I wish everyone the best with their rainforest garden including a large endeavours and hope this newsletter was Brachychiton discolor, Dianella worth the wait.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Ecology of Proteaceae with Special Reference to the Sydney Region
    951 Ecology of Proteaceae with special reference to the Sydney region P.J. Myerscough, R.J. Whelan and R.A. Bradstock Myerscough, P.J.1, Whelan, R.J.2, and Bradstock, R.A.3 (1Institute of Wildlife Research, School of Biological Sciences (A08), University of Sydney, NSW 2006; 2Department of Biological Sciences, University of Wollongong, NSW 2522; 3Biodiversity Research and Management Division, NSW National Parks & Wildlife Service, PO Box 1967, Hurstville, NSW 1481) Ecology of Proteaceae with special reference to the Sydney region. Cunninghamia 6(4): 951–1015. In Australia, the Proteaceae are a diverse group of plants. They inhabit a wide range of environments, many of which are low in plant resources. They support a wide range of animals and other organisms, and show distinctive patterns of distribution in relation to soils, climate and geological history. These patterns of distribution, relationships with nutrients and other resources, interactions with animals and other organisms and dynamics of populations in Proteaceae are addressed in this review, particularly for the Sydney region. The Sydney region, with its wide range of environments, offers great opportunities for testing general questions in the ecology of the Proteaceae. For instance, its climate is not mediterranean, unlike the Cape region of South Africa, south- western and southern Australia, where much of the research on plants of Proteaceae growing in infertile habitats has been done. The diversity and abundance of Proteaceae vary in the Sydney region inversely with fertility of habitats. In the region’s rainforest there are few Proteaceae and their populations are sparse, whereas in heaths in the region, Proteaceae are often diverse and may dominate the canopy.
    [Show full text]
  • Ecology and Biogeography in 3D: the Case of the Australian Proteaceae
    DOI: 10.1111/jbi.13348 PERSPECTIVE Ecology and biogeography in 3D: The case of the Australian Proteaceae Abstract (Figure 1a). The relative importance of each type of pressure has The key biophysical pressures shaping the ecology and evolution of varied over time and across space (Keeley, Pausas, Rundel, Bond, & species can be broadly aggregated into three dimensions: environ- Bradstock, 2011). For instance, in regions where the climate (e.g. arid mental conditions, disturbance regimes and biotic interactions. The or cold ecosystems) or substrate (e.g. wetlands) is relatively extreme, relative importance of each dimension varies over time and space, environmental factors (temperature, water availability, salinity) are and in most cases multiple dimensions need to be addressed to ade- likely to play a major role in shaping species traits and distributions. quately understand the habitat and functional traits of species at Under intermediate and seasonal climatic conditions (e.g. tropical broad spatial and phylogenetic scales. However, it is currently com- savannas, mediterranean ecosystems), disturbance is likely to play a mon to consider only one or two selective pressures even when major role (Bond, Woodward, & Midgley, 2005; Keeley, Bond, Brad- studying large clades. We illustrate the importance of the all-inclu- stock, Pausas, & Rundel, 2012). In contrast, under benign and largely sive multidimensional approach with reference to the large and ico- aseasonal conditions (e.g. rain forests), species interactions are pre- nic plant family,
    [Show full text]
  • Full Article
    Volume 3(2): 231–239 TELOPEA Publication Date: 26 May 1988 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19884810 Journal of Plant Systematics 6 DOPII(liPi Tm st plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) 231 A revision of Hicksbeachia (Proteaceae) Peter H. Weston Abstract Weston, Peter H. (National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Australia 2000) 1988. A revision of Hicksbeachia (Proteaceae). Telopea 3(2): 231-239, figs 1-2. - The genus Hicksbeachia is revised and descriptions given of seedling and adult characters of both species. Hicksbeachia pilosa is described and its geographic variability discussed. Introduction Hicksbeachia has generally been regarded as a monotypic genus consisting of H. pinnatifolia F. Muell., a widespread species disjunctly distributed from the Nambucca River in north-eastern New South Wales to Tambourine Mountain in south-eastern Queensland and from the Cardwell Range to the Big Tableland in north-eastern Queensland (see e.g. Francis 1929, Floyd 1978). Although Sleumer (1955) transferred Helicia diversifolia C. White to Hicksbeachia, Johnson and Briggs (1975) subsequently described a new genus, Athertonia, to accommodate this species. Johnson and Briggs (1975) also suggested that the northern Queensland populations of Hicksbeachia sens. strict. constitute a different species from those in south-eastern Australia. In the course of preparing a treatment of Hicksbeachia sens. strict. for the 'Flora of Australia', I have confirmed that the northern Queensland populations are morphologically different from those in south-eastern Australia. Indeed, there may be more than one taxon in northern Queensland.
    [Show full text]
  • Flowers, Inflorescences & Fruits 2020
    Australian Plants Society NORTH SHORE GROUP Ku-ring-gai Wildflower Garden Flowers, Inflorescences and Fruits FLOWERS In common usage the word ‘flower’ is used for both a single flower and a number of flowers grouped together, for example a Banksia spike. Closer examination shows it is made up of single flowers, all with a similar structure. A flower is the sexual reproductive shoot of a plant, consisting of a receptacle that bears the sepals, petals, stamens and carpels – the four basic parts of a flower. Broadly speaking, the parts are in concentric rings. Sepal: Makes up the outer ring, usually green and leaf-like, and in the bud stage encloses and protects the other flower parts. Collectively known as the calyx. Sepals could be free, wholly or partly united, they could fall early or remain as part of the fruit. Petal: Makes up the next inner ring, usually conspicuous, brightly coloured, to attract pollinators. Collectively known as the corolla. They could also be free, part or fully united giving rise to variety of types. Tepal: A free segment of a perianth not recognized as a petal or a sepal. Perianth: Usually consisting of a whorl of sepals and/or a whorl of petals, or two whorls of tepals. Pedicel: (stalk) of a flower, if not present the flower is sessile. Female part of the flower Gynoecium: the carpel (if solitary) or carpels of a flower. Carpel: A unit of the female organ of the flower, with an ovary bearing one or more ovules (female cells), usually a style (stalk), joining the ovary and a pollen receptive stigma of various shapes and size.
    [Show full text]
  • Contrasted Patterns of Hyperdiversification in Mediterranean Hotspots
    Contrasted patterns of hyperdiversification in Mediterranean hotspots Herve´ Sauqueta,b,c,1, Peter H. Westonb, Cajsa Lisa Andersond, Nigel P. Barkere, David J. Cantrillc,f, Austin R. Mastg, and Vincent Savolainena,h aJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, United Kingdom; bNational Herbarium of New South Wales, Botanic Gardens Trust, Mrs Macquaries Road, Sydney NSW 2000, Australia; cDepartment of Palaeobotany, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden; dDepartment of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyva¨gen 18D, SE-752 36 Uppsala, Sweden; eDepartment of Botany, Rhodes University, Grahamstown 6140, South Africa; fNational Herbarium of Victoria, Royal Botanic Gardens, Melbourne, Private Bag 2000, South Yarra, Victoria 3141, Australia; gDepartment of Biological Science, Florida State University, Tallahassee, FL 32306; and hImperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom Edited by Peter R. Crane, University of Chicago, Chicago, IL, and approved November 12, 2008 (received for review June 9, 2008) Dating the Tree of Life has now become central to relating patterns Africa or Banksia in Western Australia. We use a rigorous of biodiversity to key processes in Earth history such as plate approach to select adequate calibration points and date a tectonics and climate change. Regions with a Mediterranean cli- multigene phylogenetic tree of all genera of this family. Prelim- mate have long been noted for their exceptional species richness inary phylogenetic analyses (12–15) have suggested that mem- and high endemism. How and when these biota assembled can bers of this group in each Mediterranean hotspot do not form a only be answered with a good understanding of the sequence of single clade but instead consist of multiple independent lineages, divergence times for each of their components.
    [Show full text]
  • The City of Melbourne's Future Urban Forest
    TheThe CitCityy ofof Melbourne’sMelbourne’s 5dcdaTDaQP]5^aTbc5dcdaTDaQP]5^aTbc Identifying vulnerability to future temperatures Authors: Dave Kendal, Jess Baumann Burnley Campus School of Ecosystem and Forest Sciences The University of Melbourne 500 Yarra Boulevard VIC 3010 AUSTRALIA T: +61 3 8344 0267 Contact: [email protected] Epert advice from Stephen Frank, Steve Livesley, Peter Symes, Anna Foley, David Reid, Peter May, Ian Shears and David Callow. First printed June 2016. Published online November 2016 by the Clean Air and Urban Landscapes Hub: http:// www.nespurban.edu.au/publications-resources/research-reports/ CAULRR02_CoMFutureUrbanForest_Nov2016.pdf The Clean Air and Urban Landscapes Hub is funded under the Australian Government’s National Environmental Science Programme with a mission to take a comprehensive view of the sustainability and liveability of urban environments. © The City of Melbourne 2016. Executive Summary Climate change is likely to have a significant effect on many trees in the City of Melbourne. Some species will perform better, while some will perform worse. The report describes the results of a project exploring the vulnerability of tree species currently planted in the City of Melbourne, and identifies some potential new species that may be more suitable for the City’s climate futures. A list of species combining those currently in the City of Melbourne’s urban forest with those being newly planted in the City of Melbourne was created. The global locations where species occur naturally and are in cultivation (and abundance where available) were compiled from existing datasets, such as ‘open data’ tree inventories and extracted from other published data, from approximately 200 cities around the world.
    [Show full text]