Challenges and Opportunities for the Nordic Power System Nordic Power System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Total Length = Approximately 760 Km 1400 MW (1.4 GW) Capacity Operational in 2022
Welcome to Viking Link Viking Link is a proposed 1400 MW high voltage direct current (DC) electricity link between the British and Danish transmission systems connecting at Bicker Fen substation in Lincolnshire and Revsing in southern Jutland, Denmark. Viking Link will allow electricity to be exchanged between Great Britain and Denmark. Total length = approximately 760 km 1400 MW (1.4 GW) capacity Operational in 2022 GB GB The project is being jointly developed between National Grid Viking Link Limited and Energinet.dk. National Grid Viking Link Limited (NGVL) is a wholly owned subsidiary of National Grid Group and is legally separate from National Grid Electricity Transmission Plc (NGET) which has the licence to own and operate the high voltage electricity transmission system in England and Wales. Energinet.dk is an independent public enterprise owned by the Danish state as represented by the Ministry of Energy, Utilities and Climate. It owns, operates and develops the Danish electricity and gas transmission systems. CONTACT US e [email protected] t 0800 731 0561 w www.viking-link.com Why we are here Thank you for coming to this public consultation event about our proposals for Viking Link. The project is at an early stage and the impact of any proposals on local people and the environment will be carefully considered as we develop our project. We intend to apply for planning permission for the British onshore works through the local planning process and we will consult and listen carefully to local communities as we develop our plans. Today we would like to introduce the project and explain what we want to build. -
North Atlantic Energy Network January 2016
North Atlantic Energy Network January 2016 Orkustofnun (OS) - National Energy Authority of Iceland Norges Arktiske Universitet (UiT) - The Arctic University of Norway Energy Styrelsen - Danish Energy Agency Jarðfeingi - Faroese Earth and Energy Directorate Shetland Islands Council - Economic Development Service Greenland Innovation Centre 1 2 EXECUTIVE SUMMARY The aim of the North Atlantic Energy Network project was to investigate how isolated energy systems in the North Atlantic can be connected to Norway and Greenland to form an electrical grid in the North Atlantic. Representatives of Greenland, Iceland, Faroe Islands, Shetland and Norway met in Copenhagen in the end of February 2015 to formulate how to tackle this question. Each country documented its status regarding energy production and potentials in the fields of renewable energy and the technological aspects were investigated. Greenland has a big hydropower and solar energy potential, which is not known in detail. Further work is needed to map the potentials. Due to lack of infrastructure and experience a cable connection between Greenland and the neighbouring countries is not realistic in the nearest future. It is technically possible to connect all of the neighbouring countries around Iceland with subsea cables. Iceland now produces about 18 TWh of electricity per year and could have the potential to double the production from geothermal and hydropower alone. There are many unclear aspects that need to be investigated further to draw a full picture of the pros and cons of interconnectors from Iceland. The legal and regulatory framework must be in place before a project of this kind can be realized and extensive grid reinforcements are needed to support export through a cable at a single connection point in Iceland. -
Offshore Wind and Hydrogen: Solving the Integration Challenge
OFFSHORE WIND AND HYDROGEN SOLVING THE INTEGRATION CHALLENGE OSW-H2: SOLVING THE INTEGRATION CHALLENGE 1 ACKNOWLEDGMENTS The study was jointly supported by the Offshore Wind Industry Council (OWIC) and Offshore Renewable Energy (ORE) Catapult, and delivered by ORE Catapult. The Offshore Wind Industry Council is a senior Government and industry forum established in 2013 to drive the development of the UK’s world- leading offshore wind sector. OWIC is responsible for overseeing implementation of the UK Offshore Wind Industrial Strategy. ORE Catapult is a not-for-profit research organisation, established in 2013 by the UK Government as one of a network of Catapults in high growth industries. It is the UK’s leading innovation centre for offshore renewable energy and helps to create UK economic benefit in the sector by helping to reduce the cost of offshore renewable energy, and support the growth of the industry. AUTHORS: ANGELIKI SPYROUDI KACPER STEFANIAK DAVID WALLACE STEPHANIE MANN GAVIN SMART ZEYNEP KURBAN The authors would like to thank a number of organisations and stakeholders for their support through Steering Committee and Expert Group meetings or individually. They include, in alphabetical order: Atkins (David Cole), BEIS (Tasnim Choudhury, Simone Cooper Searle, David Curran, Rose Galloway – Green, Fiona Mettam, Alan Morgan, Allan Taylor, Mark Taylor, Rita Wadey, Alex Weir) Committee on Climate Change (Mike Hemsley, David Joffe, Julia King), Crown Estate Scotland (Mark McKean), EDF Energy (David Acres), Energy Systems Catapult (Nick -
Methodology of Comparison 2013
METHODOLOGY OF COMPARISON 2013 Comparative Analysis of Sustainability Performance Methodological Remarks Convinced that a comparison of environmental, social and governance performance is of interest, not only to the Company itself, but also to its stakeholders, certain comparisons between Terna’s results and those of other com- panies are included in the 2013 Sustainability Report, as was the case in the preceding three years. Listed below are the main criteria adopted in the analysis, as an introduction to the reading and interpretation of the comparisons of individual indicators in the Report: • three panels of companies were identified: an industry panel, composed of the European transmission system operators and the major extra-European operators in terms of kilometres of lines managed; and two multi- industry panels, the first relative to large Italian companies (the 40 companies of the FTSE-MIB at 18 December 2013) and the second relative to the best international performers (the 24 world Sustainability Industry Group Leaders, identified by the RobecoSAM sustainability rating agency and disclosed at the publishing of the Dow Jones Sustainability Index of September 2013). The purpose of the three panels is to guarantee, also relative to the type of indicator reviewed, a comparison between companies with the same operational characteristics, an Italian comparison, and a comparison with the top international performers. The Terna figures do not contribute to the calculation of the average in the case of the RobecoSAM – Supersector Leaders panel; • the companies considered from among those in the three panels were those which publicise the information necessary for comparisons either on their websites, through the Sustainability Report (even if not prepared following the GRI guidelines) or through other documentation (HSE Report, financial report, etc.). -
System Plan 2018 – Electricity and Gas in Denmark 2 System Plan 2018
SYSTEM PLAN 2018 – ELECTRICITY AND GAS IN DENMARK 2 SYSTEM PLAN 2018 CONTENTS 1. A holistic approach to electricity and gas planning ......................................3 1.1 Energinet’s objectives and the political framework .............................................. 3 1.2 New organisation ............................................................................................................. 4 1.3 Analysis and planning .................................................................................................... 5 1.4 Research and development .......................................................................................... 8 1.5 Environmental reporting ..............................................................................................10 1.6 Energy efficiency ............................................................................................................11 2. Electricity .........................................................................................................16 2.1 Security of electricity supply ......................................................................................17 2.2 Resources to safeguard balance and technical quality ......................................22 2.3 Cooperation with other countries ..............................................................................24 2.4 Cooperation with other grid operators ....................................................................29 2.5 Planning for conversion and expansion of electrical installations -
EWEA Offshore Report 2009
Oceans of Opportunity Harnessing Europe’s largest domestic energy resource A report by the European Wind Energy Association Oceans of opportunity Europe’s offshore wind potential is enormous and able to power Europe seven times over. Huge developer interest Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU’s electricity whilst avoiding 200 million tonnes of CO2 emissions each year. Repeating the onshore success EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 – what the wind energy industry Oceans of Opportunity has achieved on land can be repeated at sea. Building the offshore grid EWEA’s proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Realising the potential Strong political support and action from Europe’s policy-makers will allow a new, multi-billion euro industry to be built. EWEA Results that speak for themselves This new industry will deliver thousands of green collar jobs and a new About EWEA renewable energy economy and establish Europe as world leader in EWEA is the voice of the wind industry, actively promoting the utilisation of offshore wind power technology. -
Requirements for Interconnection of HVDC Links with DC-DC Converters
Requirements for interconnection of HVDC links with DC-DC converters Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, Oriol Gomis-Bellmunt, Florent Morel To cite this version: Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, et al.. Re- quirements for interconnection of HVDC links with DC-DC converters. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct 2019, Lisbon, Portugal. pp.4854-4860, 10.1109/IECON.2019.8927640. hal-02432353 HAL Id: hal-02432353 https://hal.archives-ouvertes.fr/hal-02432353 Submitted on 8 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Requirements for interconnection of HVDC links with DC-DC converters Daniel Gómez A. Juan D. Páez Marc Cheah-Mane Jose Maneiro SuperGrid Institute SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- 5647-0488 8712-3630 0942-661X 5717-6176 Piotr Dworakowski Oriol Gomis-Bellmunt Florent Morel SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0003- 6893-0103 9507-8278 3098-7806 Abstract— The number of high voltage direct current (HVDC) links continue to increase over the years, most of them, for offshore applications or bulk power transmission over long distances. -
Firmness Deadlines
List of Bidding Zone borders and/or their subsets and their corresponding day-ahead firmness deadlines List of Bidding Zone borders and/or their subsets of interconnectors Day-ahead firmness List of responsible TSOs deadline Austria (AT) Czechia (CZ) <> D-1 10:00 APG CEPS Austria (AT) Hungary (HU) <> D-1 10:00 APG MAVIR Austria (AT) Italy (NORD) <> D-1 11:00 APG TERNA Austria (AT) Slovenia (SI) <> D-1 11:00 APG ELES Belgium (BE) France (FR) <> D-1 11:00 ELIA RTE Belgium (BE) Netherlands (NL) <> D-1 11:00 ELIA TenneT TSO B.V. Belgium (BE) Great Britain (GB) <> D-1 11:00 ELIA, Nemo Link NGESO, Nemo Link Croatia (HR) Hungary (HU) <> D-1 10:00 HOPS MAVIR Croatia (HR) Slovenia (SI) <> D-1 11:00 HOPS ELES Czechia (CZ) Germany (DE) <> D-1 10:00 CEPS 50Hertz Czechia (CZ) Germany (DE) <> D-1 10:00 CEPS TenneT TSO GmbH Czechia (CZ) Poland (PL) <> D-1 10:00 CEPS PSE Denmark (DK1) Denmark (DK2) <> D-1 11:00 Energinet Energinet Denmark (DK1) Germany (DE) <> D-1 11:00 Energinet TenneT TSO GmbH Denmark (DK2) Germany (DE) <> D-1 11:00 Energinet 50Hertz France (FR) Germany (DE) <> D-1 11:00 RTE Amprion, Transnet BW 1 | P a g e List of Bidding Zone borders and/or their subsets of interconnectors Day-ahead firmness List of responsible TSOs deadline France (FR) Italy (NORD) <> D-1 11:00 RTE TERNA France (FR) Spain (ES) <> D-1 11:00 RTE REE Germany (DE) Amprion, Netherlands (NL) <> D-1 11:00 TenneT TSO GmbH TenneT TSO B.V. -
Ginet, Svenska Kraftnät and Statnett
Explanatory document concerning the proposal from the Transmission system operators Ener- ginet, Svenska kraftnät and Statnett for the deter- mination of LFC blocks within the Nordic synchro- nous area in accordance with Article 141(2) of the Commission Regulation (EU) 2017/1485 of 2 Au- gust 2017 establishing a guideline on electricity transmission system operation 1 Content 1. Introduction ................................................................................................................ 3 2. Legal requirements and interpretation ............................................................................ 3 2.1 Legal references and requirements ..................................................................... 3 2.2 Interpretation and scope of the proposal ............................................................. 4 3. Proposal for LFC blocks in the Nordic Synchronous Area ................................................... 5 3.1 Current status in the Nordic synchronous system ................................................. 5 3.2 Assessment of prerequisites for the proposal........................................................ 6 3.3 Process to form a block with three parties............................................................ 7 3.4 Expected impact of the proposed load-frequency control structure .......................... 8 3.5 Public consultation ............................................................................................ 8 4. Timescale for implementation ...................................................................................... -
Summer Outlook Report 2012 and Winter Review 2011/2012
SUMMER OUTLOOK REPORT 2012 AND WINTER REVIEW 2011/2012 European Network of Transmission System Operators for Electricity An Overview of System Adequacy: Summer Outlook Report 2012 and Winter Review 2011/2012 ENTSO -E Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 7410950 • Fax +32 2 741 0951 • [email protected] • www.entsoe.eu SUMMER OUTLOOK REPORT 2012 AND WINTER REVIEW 2011/2012 European Network of Transmission System Operators for Electricity 1 INTRODUCTION ....................................................................................................... 3 2 EXECUTIVE SUMMARY ............................................................................................. 4 3 METHODOLOGY ...................................................................................................... 5 3.1 SOURCE OF INFORMATION AND METHODOLOGY ................................................................................... 5 3.2 AIMS AND METHODOLOGY ................................................................................................................ 7 4 WINTER REVIEW .................................................................................................... 10 5 SUMMER OUTLOOK ............................................................................................... 11 5.1 GENERAL OVERVIEW ...................................................................................................................... 11 5.2 INDIVIDUAL COUNTRY PERSPECTIVE ANALYSIS ................................................................................. -
NORTH-SOUTH 400Kv INTERCONNECTION DEVELOPMENT
NORTH-SOUTH 400kV INTERCONNECTION DEVELOPMENT OUTLINE AND UPDATE OF EIRGRID’S CONSIDERATION OF THE TRANSMISSION TECHNOLOGY OPTIONS AS PRESENTED TO THE INDEPENDENT EXPERT GROUP DECEMBER 2017 A European Project of Common Interest EXECUTIVE SUMMARY The Minister for Communications, Climate Action and Environment has appointed an independent expert group (IEG) to examine the technical feasibility and cost of undergrounding the North-South Interconnector, taking into account the most recent developments in technology and experience gained from existing projects abroad. This report sets out EirGrid’s position on these matters. EirGrid is proposing that the proposed interconnector be implemented by means of a single circuit 400 kV overhead line. The proposed overhead line will be approximately 137 km in length (103 km in Ireland and 34 km in Northern Ireland) and will form a second high capacity tie-line between the networks of Ireland and Northern Ireland. Planning approval for the part of the proposal located in Ireland has been received from An Bord Pleanála. This report replicates and updates the evaluation of the technology options that was submitted to An Bord Pleanála by EirGrid during the planning process. EirGrid’s evaluation of the technology options was carried out in the knowledge that the proposed second North South Interconnector will be of the highest strategic importance for the island of Ireland, with a power carrying capacity equivalent to 23% of the island’s peak demand. It will form an internal reinforcement of the single ‘all-island’ network and will operate like any other transmission circuit in the meshed network. HVDC technology was considered as an option. -
Interconnectors
Connecting for a smarter future How interconnectors are making energy better for consumers Benefiting customers today Stronger links for and tomorrow a smarter future Interconnectors are making energy more secure, affordable Interconnectors are transmission cables that allow and sustainable for consumers across Great Britain (GB) electricity to flow freely between markets. They are at and Europe. And they are set to deliver much more. the heart of the transition to a smarter energy system. Tomorrow’s energy will be cleaner, more flexible and more responsive to the individual needs of consumers. To efficiently deliver the energy system of tomorrow, European countries are working together to maximise the potential of technologies £3 billion investment like battery storage, wind and solar power. Interconnectors Since 2014, over £3 billion has been invested in 4.4 GW of new enable smarter energy systems to react quickly to changes interconnector capacity, which will more than double the existing in supply and demand, ensuring renewable energy flows capacity between GB and continental Europe by the early 2020s. from where it is being generated in large quantities, to where it is needed most. Consumers benefit from interconnectors because they open the door to cheaper energy sources and Power for 11 million homes help GB build a smarter energy system. 4.4 GW of capacity provides access to enough electricity to power National Grid recognises 11 million homes. While the future relationship between GB and the EU the challenges that remains unclear, we are confident that we will continue Brexit poses. However, to trade electricity across interconnectors. It is in the best interests of all consumers for GB to keep working closely we remain confident 9.5 GW more that trade in electricity There is potential to increase the benefits to consumers through a with the EU to build an energy system that makes the best further 9.5 GW of interconnectors that will help deliver a smarter, more use of all our energy resources.