Department of the Interior
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Plant Inventory of the `Ōla`A Trench at Hawai`I Volcanoes National Park
PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 139 PLANT INVENTORY OF THE `ŌLA`A TRENCH AT HAWAI`I VOLCANOES NATIONAL PARK April 2007 Mashuri Waite1 and Linda Pratt2 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), NPS Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawai`i National Park, HI 96718 2 USGS Pacific Island Ecosystems Research Center, P.O. Box 44, Hawai`i National Park, HI 96718 TABLE OF CONTENTS List of Figures ......................................................................................................i Abstract ...............................................................................................................1 Introduction.........................................................................................................1 Study Area...........................................................................................................2 Methods ...............................................................................................................3 Vouchers........................................................................................................4 Coordination and Logistics.............................................................................5 Observations and Discussion............................................................................6 Description of Vegetation...............................................................................6 -
Insecticides - Development of Safer and More Effective Technologies
INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. -
Taxonomic Studies on the Opiinae (Hymenoptera, Braconidae) Fauna of the Turkish Central Part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van)
Original research Taxonomic studies on the Opiinae (Hymenoptera, Braconidae) fauna of the Turkish central part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van) Ahmet BEYARSLAN Department of Biology, Faculty of Arts and Science, Bitlis Eren University, Turkey e-mail: [email protected] Abstract: In order to determine Opiinae fauna of Turkey, adult specimens of Opiinae (Hymenoptera, Braconidae) are collected from different habitats of Bingöl, Bitlis, Muş and Van using Malaise and light traps and sweeping nets between 2016 and 2017. The collected materials are prepared and labeled. In addition, relevant literature and comparison materials available in our collection are used for taxonomical examiation of the obtained material. The altitudes and coordinates of localities and collection dates are presented. A total of 24 species in 4 genera and 12 subgenera are determined. From these species Opius (Merotrachys) podomelas Fischer, 1972 is firstly record in the fauna of Turkey. Keywords: Agromyzidae, Podomelas, Parasitoid, malasie, Braconidae, Yu, Tobias Citing: Beyarslan, A. 2020. Taxonomic studies on the Opiinae (Hymenoptera, Braconidae) fauna of the Turkish central part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van). Acta Biologica Turcica, 33(1): 1-7. Introductıon forewing and usually lacking the recurrent vein on the The taxonomy of the parasitic Hymenoptera is perhaps the hind wing. The pterostigma is often thin and long (cuneate least known member of a large group of insects; until or linear), the radial cell usually reaches the wing apex, recently, Braconidae have received less attention than and the second radiomedial cell is usually long. In many many other groups of Parasitica. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
Research Designs for Hawaiian Archaeology
Research Designs for Hawaiian Archaeology Research Designs for Hawaiian Archaeology Agriculture, Architecture, Methodology Thomas S. Dye, editor Special Publication 3 Society for Hawaiian Archaeology All rights reserved. Copyright © 2010 by Society for Hawaiian Archaeology. Published in 2010 in the United States of America by Society for Hawaiian Archaeology, P.O. Box 23292, Honolulu, HI 96823. Contents List of Figures vii List of Tables ix 1 Watershed: Testing the Limited Land Hypothesis Robert J. Hommon 1 2 Traditional Hawaiian Surface Architecture: Absolute and Rel- ative Dating Thomas S. Dye 93 3 Lady Mondegreen’s Hopes and Dreams: Three Brief Essays on Inference in Hawaiian Archaeology Dave Tuggle 157 Index 185 v List of Figures 2.1 Map of the Hawaiian Islands . 96 2.2 Oblique schematic of Kaneaki Heiau . 98 2.3 Plan of site 50–10–04–22268 ................... 104 2.4 Interior of the U-shape enclosure at site 50–10–04–22268 . 105 2.5 Panoramic view of site 50–10–04–22268 ............ 106 2.6 Hypothetical stratigraphic section . 110 2.7 Bayesian calibration yields interpretable results . 113 2.8 Deduction and induction . 115 2.9 Plan of site 50–10–04–22119 .................... 121 2.10 Dated enclosure at site 50–10–04–22119 ............ 122 2.11 Plan of site 50–10–04–22201 ................... 124 2.12 Plan of site 50–10–04–22248 ................... 125 2.13 Plan of site 50–50–17–1089 .................... 127 2.14 Plan of site 50–50–17–1088 .................... 128 2.15 Estimated ages of construction events . 132 2.16 Plan of H¯apaiali‘i Heiau . -
International Symposium on Biological Control of Arthropods 424 Poster Presentations ______
POSTER PRESENTATIONS ______________________________________________________________ Poster Presentations 423 IMPROVEMENT OF RELEASE METHOD FOR APHIDOLETES APHIDIMYZA (DIPTERA: CECIDOMYIIDAE) BASED ON ECOLOGICAL AND BEHAVIORAL STUDIES Junichiro Abe and Junichi Yukawa Entomological Laboratory, Kyushu University, Japan ABSTRACT. In many countries, Aphidoletes aphidimyza (Rondani) has been used effectively as a biological control agent against aphids, particularly in greenhouses. In Japan, A. aphidimyza was reg- istered as a biological control agent in April 1999, and mass-produced cocoons have been imported from The Netherlands and United Kingdom since mass-rearing methods have not yet been estab- lished. In recent years, the effect of imported A. aphidimyza on aphid populations was evaluated in greenhouses at some Agricultural Experiment Stations in Japan. However, no striking effect has been reported yet from Japan. The failure of its use in Japan seems to be caused chiefly by the lack of detailed ecological or behavioral information of A. aphidimyza. Therefore, we investigated its ecological and behavioral attributes as follows: (1) the survival of pupae in relation to the depth of pupation sites; (2) the time of adult emergence in response to photoperiod during the pupal stage; (3) the importance of a hanging substrate for successful mating; and (4) the influence of adult size and nutrient status on adult longev- ity and fecundity. (1) A commercial natural enemy importer in Japan suggests that users divide cocoons into groups and put each group into a plastic container filled with vermiculite to a depth of 100 mm. However, we believe this is too deep for A. aphidimyza pupae, since under natural conditions mature larvae spin their cocoons in the top few millimeters to a maxmum depth of 30 mm. -
Hymenoptera, Braconidae) of Finland, Part 2
@EntomoldgicaFennica. 15 October 1999 o A survey of Opiinae (Hymenoptera, Braconidae) of Finland, part 2 Maximilian Fischer & Martti Koponen Fischer, M. & Koponen, M. 1999: A survey of Opiinae (Hymenoptera, Braconidae) of Finland, part 2. - Entomol. Fennica 10: 129-160. Faunistic records of 150 species of Opiinae are given mainly for Finland. 78 species are reported as new to Finland. The gross distributions and known hosts are mentioned. Psyttalia cariiiata (Thomson), Biosteres (Chilotrichia) bicolor (Wesmael) and B. (C.) sylvaticiis (Haliday) are deleted from the fauna of Fin- land. Paraphytomyza similis (Brischke) is a new host for Opiiis (Odontopoea) connivens Thomson, and Eziphranta connexa (Fabricius) (Diptera, Tphritidae) for Psyttalia concolor (Szépligeti). Maximilian Fischel; Natural History MLrseum Vienna, 2. Zoological Department, Biirgring 7, A-1014 .Eenna, Airstria Martti Koponen, Department ofApplied Zoology, ?? O. Box 27, FIN-O0014 Uni- versiíy of Helsinki . Received 1 Febrcrary 1998, accepted 2 Jdy 1999 Subgenus Odontopoea Fischer Host. in Finland reared from Diptera, Agro- myzidae: Paraphytomyza similis (Briscke) by E. Odontopoea Fischer, 1986: 610. Type species Thuneberg (new host). Opizrs epcilatirs Papp. Marerial examinen. 1d and 2 P from Finland (DAZH, MZH), N: Vantaa, 22.9.1979 (M. Koponen); Sa: Joutseno (E. Thuneberg); Obb: Ranua, 19.7.1980 (M. Koponen leg.), and Opius (Odontopoea) connivens Thomson 1 0 from Estonia, Laanemaa: Puhtu, 29.5.1990 (M. Kopo- nen leg.). Opiirs (Nosopaeus) connivens Thomson, 1895: 2190,?. Opius (Odontopoea) eprilatiis Pupp Opiirs coiznivens; Fischer 1959g: 70; 197 1a: 56. Opiiis (Nosopoea) connivetis; Fischer 1972: 292 Opiirs eprilatcrs Papp, 19SOa: 50, 53. 55; 1981b: (key), 306 (redescription); Papp 1979: 75. 261, C. -
November 2009 an Analysis of Possible Risk To
Project Title An Analysis of Possible Risk to Threatened and Endangered Plant Species Associated with Glyphosate Use in Alfalfa: A County-Level Analysis Authors Thomas Priester, Ph.D. Rick Kemman, M.S. Ashlea Rives Frank, M.Ent. Larry Turner, Ph.D. Bernalyn McGaughey David Howes, Ph.D. Jeffrey Giddings, Ph.D. Stephanie Dressel Data Requirements Pesticide Assessment Guidelines Subdivision E—Hazard Evaluation: Wildlife and Aquatic Organisms Guideline Number 70-1-SS: Special Studies—Effects on Endangered Species Date Completed August 22, 2007 Prepared by Compliance Services International 7501 Bridgeport Way West Lakewood, WA 98499-2423 (253) 473-9007 Sponsor Monsanto Company 800 N. Lindbergh Blvd. Saint Louis, MO 63167 Project Identification Compliance Services International Study 06711 Monsanto Study ID CS-2005-125 RD 1695 Volume 3 of 18 Page 1 of 258 Threatened & Endangered Plant Species Analysis CSI 06711 Glyphosate/Alfalfa Monsanto Study ID CS-2005-125 Page 2 of 258 STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS The text below applies only to use of the data by the United States Environmental Protection Agency (US EPA) in connection with the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA §10(d)(1)(A), (B), or (C). We submit this material to the United States Environmental Protection Agency specifically under the requirements set forth in FIFRA as amended, and consent to the use and disclosure of this material by EPA strictly in accordance with FIFRA. By submitting this material to EPA in accordance with the method and format requirements contained in PR Notice 86-5, we reserve and do not waive any rights involving this material that are or can be claimed by the company notwithstanding this submission to EPA. -
A Framework for the Aha Moku System And
A FRAMEWORK FOR THE AHA MOKU SYSTEM AND COLLABORATIVE GOVERNANCE HISTORY OF THE ‘AHA COUNCILS “There is no man familiar with fishing least he fishes and becomes an expert. There is no man familiar with the soil least he plants and becomes an expert. There is no man familiar with hō`ola least he be trained as a kahuna and becomes expert at it."1 • Following this principle, leaders who govern people manage the resources should be those who are actual practitioners; i.e those who have gained a comprehensive and masterful understanding of the biological, physical, and spiritual aspects of the ʻāina. In traditional Hawaiian resource management, those with relevant knowledge comprised what were called the ‘Aka Kiole,2 the people’s council. o ‘Aha – The kūpuna metaphorically ascribed these councils and the weaving of various ʻike, or knowledge streams, as an ʻaha. The individual aho or threads made from the bark of the olonā shrub were woven together to make strong cordage, called ʻaha. Thus the early Hawaiians referred to their councils as ʻaha to represent the strong leadership created when acknowledged ʻike holders came together to weave their varied expertise for collective decision-making that benefitted the people, land, and natural resources.3 o Kiole – The term kiole described the abundant human population, likened to the ʻiole or large schools of pua (fish fingerlings) that shrouded the coastline en masse. Thus, Molokai’s councils were called ʻAha Kiole, the people’s council.4 • ʻAha council leadership was determined by the people who collectively understood who the experts were in their community.