Ethnopharmacological Potential and Medicinal Uses of Miracle Herb Dioscorea Spp

Total Page:16

File Type:pdf, Size:1020Kb

Ethnopharmacological Potential and Medicinal Uses of Miracle Herb Dioscorea Spp Journal of Ayurvedic and Herbal Medicine 2018; 4(2): 79-85 Review Article Ethnopharmacological Potential and Medicinal Uses of ISSN: 2454-5023 Miracle Herb Dioscorea spp. J. Ayu. Herb. Med. 2018; 4(2): 79-85 Aadil Mustafa1*, Aziz Ahmad2, Aadil Hussain Tantray1, Parvaiz Ahmad Parry1 © 2018, All rights reserved 1 Research Associate at Faculty of Pharmaceutical Sciences, Mewar University, Chittorgarh, Rajasthan-312901, India. www.ayurvedjournal.com 2 Assistant Professor and Researcher at Faculty of Pharmaceutical Sciences, Mewar University, Chittorgarh, Received: 01-05-2018 Rajasthan-312901, India. Accepted: 07-07-2018 ABSTRACT Dioscorea a well-known source of Diosgenin-steroid raw material, is one of the oldest tuber crop cultivated or harvested from wild in the tropical region throughout the world and make up one of the chief food items for a number of tribal groups. In India there are about 50 species of dioscorea, mainly found in North-East region which is rich in tropical root and tuber crops. Dioscorea produces rhizomes or bulbils, which are having rich medicinal and economic value. The rhizomes are used for the treatment of different diseases like cardiovascular system disorders, central nervous system disorders, disease of bones and joint metabolic disorder, disgestive disorders, sore throat for struma, diarrhea, irritability, abdominal pain, dysfunctional changes in the female reproductive system, skin diseases, oncology and immune deficiency and autoimmune diseases, anti-diabetes, neuroprotectiveused, decrease oxidative stress and many more disordered conditions. Diosgenin is a precursor for the chemical synthesis of drug like steroids and has a great importance for pharmaceutical industry. Dioscorea contains various bioactive chemical substances like diosgenin, corticosterone, and sigmasterol, which are of great market value. The current study is to appraise the medicinal properties, phytochemicals, and pharmacological activities of Dioscorea. Keywords: Dioscorea, chemical constituents, pharmacological activities. INTRODUCTION Dioscorea species is a climber herb with rhizomatous rootstook. It belongs to the family Dioscoreaceae. The genus Dioscorea belongs to division Monocotyledon comprises 350-400 species. Dioscorea is spread all over the tropics and subtropical regions in the world, 96% production occur in Africa. Other production centers are South America, the Caribbean islands and also found in South East Asia [1]. Dioscorea is a perennial plant, growing up to 3m (10 ft) in height. Rhizomes are ligneous asymmetrical, alternately arranged. Leaves are simple, 5-11.5cm long, 4-10.5cm broad, triangular ovate, often heart-shaped, 7- 9 nerved, long pointed, both sides smooth and glabrous, petiole slender, 5-10cm long. Male flowers in leaves axils, simple or sometimes branched, slender, flexible, 7.5-25cm long. Flowers tiny, secluded in clusters; stamens 6, anthers inferior. Female flowers stalk solitary, slender upto15cm long. Underground rhizomes of Dioscorea commonly known as wild yam. Dioscorea has been observed of very high importance in private agencies as well as pharmaceutical firms, and the plant is mainly collected in India along with Himalaya [2, 3]. Dioscorea is endangered in natural habitats due to illicit use, spread of cities, and over-use by local peoples for trading and domestic purposes [4]. The species (deltoidea) is mainly found in India, China, Nepal, Bhutan, Pakistan, Afghanistan and Vietnam. In India the plant species are mostly distributed in Kashmir to Assam at altitudes of 550-3100m [5]. In Indian Himalayan regions, it is found in Arunanchal Pradesh, Sikkim, Assam, Meghalaya, Jammu and Kashmir, Himanchal Pradesh, and Uttarakhand [1]. This plant is special because its rhizomes contain Diosgenin, which is a phytoestrogen that convert into the hormone progesterone. Diosgenin is a basis for anti-infertility drugs such as contraceptive pills, and sex hormones, such as testosterone and supplements are used by body builders to increase their testosterone levels and build muscle strength. Dioscorea tubers are straight and zinger like shaped. The tubers Of Dioscorea are use in the management *Corresponding author: of a number of diseases such as gastrointestinal disorders, sour throat from struma, diarrhea, irritability, Aadil Mustafa abdominal pain, wounds, burns and anemia. The tubers are also supposed to possess activities like Research Associate at Faculty of antimicrobial, antioxidant, stomachic and hypoglycemic activities [6]. Besides it, Dioscorea is used extensively Pharmaceutical Sciences, Mewar in the treatment of dysentery, piles and chronic liver pain disease [7]. University, Chittorgarh, Rajasthan-312901, India. Email: aadilbhat409[at]gmail.com 79 Classification Pharmacological Activity ➢ KINGDOM: Plantae Anticancer Activity ➢ PHYLUM: Tracheophyta ➢ ORDER: Dioscoreales The treatment of cancer from steroidal compounds is becoming an ➢ CLASS: Spermatopsida, Mangolipsida, Monocotyledons attractive choice for medicinal chemists and many active molecules have ➢ FAMILY: Dioscoreaceae shown this activity [20, 21]. Diosgenin is also investigated to show ➢ GENUS: Dioscorea chemopreventive/therapeutic effect against cancers of several organs, ➢ SPECIES: D. Deltoidea, D. Bulbifera, L. D. alata. and this has established the high importance of this molecule as a potential antitumor agent [22, 23]. Diosgenin has been tested for anticancer effect in various tumoural cell lines and it was found that the anticancer activity depends on the cell type and on concentration. Thus, diosgenin has antiproliferative activity, for various cancers namely, in prostate cancer (PC-3 and DU-145 cells) [24]. (Colon carcinoma (HCT-116 and HT-29 cells), erythroleukemia (HEL cells), squamous carcinoma (A431, Hep2, and RPMI 2650 cells), hepatocellular carcinoma (HepG2 and HCC cells) [21, 25, 26] gastric cancer (BGC-823 cells), lung cancer (A549 cells) [27] breast cancer (MCF-7), and human chronic myeloid leukaemia (CML) (K562 cells) [28]. Regarding mechanism of action, many studies report that diosgenin is associated with a change of several cell signalling events which are necessary for cell growth/proliferation, differentiation, epithelial-mesenchymal transition migration, and apoptosis, as well as oncogenesis and angiogenesis [30]. Within the various phases of tumorigenesis, Diosgenin is believed to induce apoptotic cell death in various stages of tumorigenesis and thus avoiding their malignant transformation [29, 22, 30]. The antitumor effects of diosgenin have been demonstrated, to occur through p53 activation, immune-modulation, cell cycle arrest, modulation of caspase-3 activity, and activation of the transcription STAT3 signalling pathway [21, 23, 25]. Regarding this Figure 1: Some common Dioscorea species. (1) Leaves of D. pentaphylla (2) D. perspective, studies have revealed that diosgenin inhibits the bulbifera Tubers (3) D. puber Tubers (4) Unequal round winged shaped Seeds of production of osteosarcoma cells through the induction of apoptosis Dioscorea deltoidea (5) Leaves of D. puber (6) Tuber of different Dioscorea spp. and cell cycle arrest in G1 phase [31] and also inhibits the spread of breast (7) D. oppositifolia Flowers, (8) D. hispida Flowers and (9) D. alata. cancer cells (MCF-7 cells) by inducing the proapoptotic p53 protein and an improve in caspase-3 levels [21, 32]. Besides it, the propagation of PC-3 Chemical constituents human prostate cancer cells is repressed by diosgenin in a depending on the dose. Diosgenin also shows antimetastatic effect by decreasing the Dioscorea rhizomes contain 75% of starch. They are non-edible, due to cell migration and incursion by diminishing matrix metalloproteinase their very bitter taste. The main constituents of dioscorea are diosgenin, expression [24]. Diosgenin is studied to have antioxidant activity, due to a steroidal sapogenin (4 to 6%) and its glycosides, Smilagenin and β- which it constitutes an interesting approach for lung cancer therapy [27, isomer yammogenin. Rhizomes also contain an enzyme sapogenase. 33]. The diosgenin-induced apoptosis of human erythroleukemia cell line Tubers are also rich in glycosides, and phenolic compounds. Diosgenin is was associated with increase in number of receptors of Cyclooxygenase- the hydrolytic product of saponin-dioscin [8]. Dioscin is made of two 2 [34]. molecules of L-rhamnose and one molecule of D. glucose. Gracillin comprises two molecules of D. glucose and one molecule of L-rhamnose Diosgenin also shows antimetastatic effects in human breast cancer by [9]. Ozo.et al [10] in 1985 reported flavonoid constituents Cyanidin-3- inhibiting the movement of human breast cancer MDA-MB-231 cells, by glucoside and the procyanidin dimmers B-1 and B-3 in Dioscorea alata L. partially decreasing Vav2 protein activity [35]. It has been reported that A report shows that Dioscorea also contains dioscorins which exhibit diosgenin reduces the VEGF expression in PC-3 cells, depending on dose, carbonic anahydrase and trypsin inhibition activities [11]. Other studies signifying this steroid can inhibit angiogenesis by interfering with this report the presence of saponins, alkaloids, flavonoids, tannin, and factor [24]. All of the above stated studies have revealed considerably the phenols in Dioscorea belophylla [12]. Also Yoon et al [13] in 2008 reported potential use of diosgenin as a new therapeutic agent against various Allantoin, in Dioscorea rhizomes. types of cancer. Therefore, efforts are being made to use the potential
Recommended publications
  • An Underutilized Orphan Tuber Crop—Chinese Yam : a Review
    Planta (2020) 252:58 https://doi.org/10.1007/s00425-020-03458-3 REVIEW An underutilized orphan tuber crop—Chinese yam : a review Janina Epping1 · Natalie Laibach2 Received: 29 March 2020 / Accepted: 11 September 2020 / Published online: 21 September 2020 © The Author(s) 2020 Abstract Main conclusion The diversifcation of food crops can improve our diets and address the efects of climate change, and in this context the orphan crop Chinese yam shows signifcant potential as a functional food. Abstract As the efects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam (Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difcult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Diversity and Distribution of the Genus Dioscorea In
    DIVERSITY AND DISTRIBUTION INTRODUCTION • The genus Dioscorea is one of the largest groups among OF THE GENUS DIOSCOREA IN monocotyledons belonging to the family Dioscoreaceae. • The members are commonly known as yams and are widely WESTERN GHATS cultivated for its edible tubers throughout tropics and occupies 3rd most important food crops in the world, next to cereals and pulses. • The word yams comes from Portuguese or Spanish name as “Inhame” which means “to eat”. Elsamma Joseph (Arackal) • The genus is distributed mainly in three centers of diversity A.G. Pandurangan & S. Ganeshan namely South Africa, South East Asia and Latin America. • The genus Dioscorea represents 850 spp. (Mabberley, 1997) and in India reported the occurrence of 32 spp. (Prain and Burkill, 1936, 1939) of which 17 are distributed in W. Ghats. • The genus shows close affinity towards dicotyledons by the presence of petiolate compound leaves, non sheathing leaf base, reticulate venation etc. Tropical Botanic Garden and Research Institute Palode, Thiruvananthapuram, Kerala REASONS FOR UNDERTAKING THE REASONS FOR UNDERTAKING THE STUDY STUDY…….contd • The taxonomy of quite a few species in this genus is considered • Many of the Dioscorea species serve as a “life saving” plant to be very problematic ( Prain and Burkill, 1936, 1939; Velayudan, group to marginal farmers and forest dwelling communities 1998) due to their continuous variability of morphological during the period of food scarcity (Arora and Anjula pandey, characters especially in aerial parts such as leaves and bulbils. 1996) This makes it difficult for taxonomists to segregate distinctly the various taxa of the genus. • Most of the tubers are edible and few are also used as medicinal.
    [Show full text]
  • Fuller’S Leadership and Over- Vincent of the Refuge Staff Are Notable for Having Sight Were Invaluable
    Acknowledgments Acknowledgments Many people have contributed to this plan over many detailed and technical requirements of sub- the last seven years. Several key staff positions, missions to the Service, the Environmental Protec- including mine, have been filled by different people tion Agency, and the Federal Register. Jon during the planning period. Tom Palmer and Neil Kauffeld’s and Nita Fuller’s leadership and over- Vincent of the Refuge staff are notable for having sight were invaluable. We benefited from close col- been active in the planning for the entire extent. laboration and cooperation with staff of the Illinois Tom and Neil kept the details straight and the rest Department of Natural Resources. Their staff par- of us on track throughout. Mike Brown joined the ticipated from the early days of scoping through staff in the midst of the process and contributed new reviews and re-writes. We appreciate their persis- insights, analysis, and enthusiasm that kept us mov- tence, professional expertise, and commitment to ing forward. Beth Kerley and John Magera pro- our natural resources. Finally, we value the tremen- vided valuable input on the industrial and public use dous involvement of citizens throughout the plan- aspects of the plan. Although this is a refuge plan, ning process. We heard from visitors to the Refuge we received notable support from our regional office and from people who care about the Refuge without planning staff. John Schomaker provided excep- ever having visited. Their input demonstrated a tional service coordinating among the multiple level of caring and thought that constantly interests and requirements within the Service.
    [Show full text]
  • Plant Production--Root Vegetables--Yams Yams
    AU.ENCI FOR INTERNATIONAL DEVILOPME4T FOR AID USE ONLY WASHINGTON. 0 C 20823 A. PRIMARYBIBLIOGRAPHIC INPUT SHEET I. SUBJECT Bbliography Z-AFOO-1587-0000 CL ASSI- 8 SECONDARY FICATIDN Food production and nutrition--Plant production--Root vegetables--Yams 2. TITLE AND SUBTITLE A bibliography of yams and the genus Dioscorea 3. AUTHOR(S) Lawani,S.M.; 0dubanjo,M.0. 4. DOCUMENT DATE IS. NUMBER OF PAGES 6. ARC NUMBER 1976 J 199p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS IITA 8. SUPPLEMENTARY NOTES (Sponaoring Ordanization, Publlahera, Availability) (No annotations) 9. ABSTRACT This bibliography on yams bring together the scattered literature on the genus Dioscorea from the early nineteenth century through 1975. The 1,562 entries in this bibliography are grouped into 36 subject categories, and arranged within each category alphabetically by author. Some entries, particularly those whose titles are not sufficiently informative, are annotated. The major section titles in the book are as follows: general and reference works; history and eography; social and cultural importance; production and economics; botany including taxonomy, genetics, and breeding); yam growing (including fertilizers and plant nutrition); pests and diseases; storage; processing; chemical composition, nutritive value, and utilization; toxic and pharmacologically active constituents; author index; and subject index. Most entries are in English, with a few in French, Spanish, or German. 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PN-AAC-745 IT. DrSCRIPTORS 13. PROJECT NUMBER Sweet potatoes Yams 14. CONTRACT NUMBER AID/ta-G-1251 GTS 15. TYPE OF DOCUMENT AID 590-1 44-741 A BIBLIOGRAPHY OF YAMS AND THE GENUS DIOSCOREA by S.
    [Show full text]
  • Human Breast Tumour Cells Viability Effect of African Dioscorea Rotundata Tuber Extracts in Mcf-7 and Mda-Mb231 Cell Lines
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084269; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 HUMAN BREAST TUMOUR CELLS VIABILITY EFFECT OF AFRICAN DIOSCOREA ROTUNDATA TUBER EXTRACTS IN MCF-7 AND MDA-MB231 CELL LINES. Joy Ifunanya Odimegwu*, Ph.D.; Olukemi Abiodun Odukoya*, PhD.; Alejandro Español**, PhD.; Maria Elena Sales**, PhD. *Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos. NIGERIA and **Laboratory of Tumor Immunopharmacology, Center for Pharmacological and Botanical Studies (CEFYBO)-CONICET. School of Medicine. University of Buenos Aires. Argentina. Corresponding author: Dr. Joy Ifunanya Odimegwu, PMB 12003 Idiaraba, Lagos. NIGERIA +234 8170140519. [email protected]; ORCID: 0000-0001-7398-1311 Co-author email addresses: Prof. Olukemi Abiodun Odukoya; [email protected] ORCID: 0000-0002-0904-0610 Dr. Alejandro Español; [email protected]; ORCID: 0000-0001-8222-4259 Prof. Maria Elena Sales; [email protected]; ORCID: 0000-0001-5086-0007 Funding: University of Lagos, NIGERIA. Tertiary Education Trust Fund [TETFUND 2015]. Third World Academy of Sience-United Nations Educational, Scientific and Cultural Organization [TWAS-UNESCO] Fellowship, Centro de Estudios Farmacologico y Botanicos-Consejo Nacional de Investigaciones Científicas y Técnicas [CEFYBO-CONICET], Buenos Aires, Argentina. The funding organisations noted here played no roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Acknowledgement: We wish to thank TETFUND, TWAS-UNESCO for the research fellowship offered to Dr.
    [Show full text]
  • Conservation and Cultivation Possibilities of Dioscorea Deltoidea (A Threatened Species) in Village Budogi, District Tehri Garhwal, Uttarakhand, India
    CONSERVATION AND CULTIVATION POSSIBILITIES OF DIOSCOREA DELTOIDEA (A THREATENED SPECIES) IN VILLAGE BUDOGI, DISTRICT TEHRI GARHWAL, UTTARAKHAND, INDIA L.R. Dangwal, Amit Singh and Amandeep Singh Herbarium and Plant Systematic Laboratory, Department of Botany, H.N.B. Garhwal University (A Central University), S.R.T. Campus, Badshahi Thaul, Tehri Garhwal, Uttarakhand Email:[email protected] Abstract: The district Tehri Garhwal, Uttarakhand have a rich and diverse form of vegetation with medicinal as well as aromatic plants. Varying soil, geology and occurrence of different climatic and microclimatic zones of the region provide suitable conditions to grow a different diversity of medicinal and aromatic plants. But some medicinal plants are becoming threatened due to unsustainable use and overexploitation, out of these medicinal plants a very important threatened medicinal plant is Dioscorea deltoidea in the region. The present study deals with conservation and cultivation possibilities of Dioscorea deltoidea from an altitudinal range 1300m to 2000m, domesticated in the village Budogi, district Tehri Garhwal, Uttarakhand, India. The preliminary data showed that in the region D. deltiodea plant properly grow and can provide baseline information of selection of suitable cultivation sites, conservation and developing agro-techniques for this species. Keywords: Medicinal Plant, Cultivation, Conservation, Threatened INTRODUCTION antimicrobial (Shui, Leong., 2002), hypoglycimic and stomachic activities (Maga, 1978). The main n the Uttarakhand state district Tehri Garhwal is constituent of Dioscorea deltoidea rhizome is I highly enriched vegetation including wild edible, diosgenin was reported by Chakravarti et al., 1960; rhizomes, tubers and different types of wild fruits, and Singh et al. (1978). From 1951-1960 Chakravarti occurrence in different climatic and microclimatic and his colleagues started surveying for the diosgenin zones in different soils.
    [Show full text]
  • Kerala State Biodiversity Board
    1 2 biodiversity FOR CLIMate RESILIENCE Editors Dr. S.C. Joshi IFS (Rtd.) Dr. V. Balakrishnan Dr. Preetha N. KERALA STATE BIODIVERSITY BOARD 3 Biodiversity for Climate Resilience [This book is a compilation of the papers presented as part of the 1st Kerala State Biodiversity Congress held during 2018] Editors Dr. S.C. Joshi IFS, Dr. V. Balakrishnan, Dr. Preetha N. Editorial Board Dr. K. Satheeshkumar Sri. K.V. Govindan Dr. K.T. Chandramohanan Dr. T.S. Swapna Sri. A.K. Dharni IFS © Kerala State Biodiversity Board 2019 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, tramsmitted in any form or by any means graphics, electronic, mechanical or otherwise, without the prior writted permissionof the publisher. Published By Member Secretary Kerala State Biodiversity Board ISBN: 978-81-934231-2-7 Citation: In. Joshi, S.C., Balakrishnan, V. and Preetha, N. (Eds.), Biodiversity for Climate Resilience. Kerala State Biodiversity Board, Thiruvananthapuram. 4 5 CONTENTS Best Practices of Biodiversity conservation 1. People’s action for Rejuvenating lost waterbodies - The Aadi Pamba Varattar Story - 5 2. Jalasamrudhi – A Modal Initiative on Water Conservation -12 3. Best Practices in Biodiversity Conservation: A Case of M. S. Swaminathan Botanic Garden in Wayanad, Kerala -17 4. Yaongyimchen Community Bio-Diversity Conservation Area , Nagaland - 29 5. Hornbill Monitoring to Ecological Monitoring – One and Half decade of Indigenous community Based Conservation and Monitoring of Endangered Rainforest Species and Habitat in Western Ghats -35 6. Best Practices in Agrobiodiversity Conservation for Climate Resilience - 41 7. Best Practices on Biodiversity Conservation in Rice Ecosystems of Kerala - 46 Biodiversity Conservation Priorities 8.
    [Show full text]
  • Lilioceris Egena Air Potato Biocontrol Environmental Assessment
    United States Department of Field Release of the Beetle Agriculture Lilioceris egena (Coleoptera: Marketing and Regulatory Chrysomelidae) for Classical Programs Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Field Release of the Beetle Lilioceris egena (Coleoptera: Chrysomelidae) for Classical Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Invasive Species Management Environmental Assessment
    United States Department of Agriculture Invasive Species Management Environmental Assessment Forest Service MAY 2011 Shawnee National Forest Alexander, Gallatin, Hardin, Jackson, Johnson, Massac, Pope, Saline, Union and Williamson Counties, Illinois Responsible Official: Hurston A. Nicholas, Forest Supervisor Contact Person: Matthew Lechner, Natural Resources Program Manager Shawnee National Forest Supervisor’s Office 50 Highway 145 South, Harrisburg, IL 62946 (618) 253-7114, Fax (618) 253-1060 [email protected] This document and supporting documents can be found on our website: http://fs.usda.gov/goto/shawnee 1 Table of Contents Chapter 1 – Purpose of and Need for Proposed Action ........................................ 3 Background ...................................................................................................................................... 3 Purpose of and Need for Action ....................................................................................................... 6 Proposed Action ............................................................................................................................... 6 Decision Framework ........................................................................................................................ 7 Public Involvement ........................................................................................................................... 7 Issues .............................................................................................................................................
    [Show full text]
  • A Practical Guide to Identifying Yams CROPS
    CROPS IRETA Publication 1/88 A Practical Guide to Identifying Yams The Main Species of Dioscorea in the Pacific Islands AUTHOR: Jill E. Wilson, Senior Fellow, USP Institute for Research, Extension and Training in Agriculture. Assisted by Linda S. Hamilton, Project Manager, South Pacific Region Agricultural Development Project. All or part of this publication may be reproduced for educational purposes. When doing so, please credit the USP Institute for Research, Extension and Training in Agriculture (IRETA). Published February 1988, by the Institute for Research, Extension and Training in Agriculture with financial assistance from the US Agency for International Development, SPRAD Project. IRETA Publications USP Alafua Campus P.O. Private Bag Apia, WESTERN SAMOA 28/88-1.5M Here is a simple guide to identifying the species of cultivated yams (Dioscorea) commonly found in the Pacific Islands. To use this guide in the field, look first at the way the yam stem twines as it climbs up its support. Then follow the guide, using other characteristics such as presence or absence of spines, aerial tubers, etc., to identify the species. Check your decision by reading the descriptive notes given for each species at the end of the guide. Stems Climb to the Right * Stem at BASE of plant usually winged but in * Stems at TOP of plant round some cultivars has few D. alata or with more than 4 ridges. spines and no wings. * Aerial tubers (bulbils) in some cultivars. * Many spines at stem BASE. * Long lateral branches. * Short tuber dormancy Stems climb to the (usually shorter than D. nummularia RIGHT.
    [Show full text]
  • Morphology of Flower, Pollen and Orbicules Ofmeghalayan Dioscorea L
    DOI : 10.15740/HAS/AJBS/12.2/223-232 ASIAN JOURNAL OF BIO SCIENCE e ISSN-0976-8343 | Visit us : www.researchjournal.co.in Volume 12 | Issue 2 | Oct., 2017 | 223-232 RESEARCH PAPER Morphology of flower, pollen and orbicules ofMeghalayan Dioscorea L. (Dioscoreaceae), North-East India: A pivotal taxon in the evolution of monocot NILOFER SHEIKH AND YOGENDRA KUMAR Department of Botany, North Eastern Hill University, SHILLONG (MEGHALAYA) INDIA Email : [email protected]; [email protected] Article Info : Received : 26.06.2017; Revised : 20.08.2017; Accepted : 18.09.2017 Flowers, pollen and orbicules morphology is an important source of information for systematic and evolutionary studies among different species, genera and families level. In the present study the floral, pollen and orbicules morphology of 80 samples of the genus Dioscorea L. representing 8 species native to Meghalaya were studied. Trichopus and Tacca, the allied genera with Burmannia of Burmanniaceae, nearest family of Dioscoreaceae were selected as an outgroup for the present study. Variation in floral, pollen and orbicules characters were observed and 62 descriptors or traits were selected for morphometric analysis. Pollen of Dioscorea is monosulcate or bisulcate with perporate or microrecticulate sexine sculptures. Orbicules were mostly spherical with smooth surface. Key words : Floral morphology, Pollen aperature, Sexine ornamentation, Orbicule morphology, Morphometric analysis How to cite this paper : Sheikh, Nilofer and Kumar, Yogendra (2017). Morphology of flower, pollen and orbicules of Meghalayan Dioscorea L. (Dioscoreaceae), North-East India: A pivotal taxon in the evolution of monocot. Asian J. Bio. Sci., 12 (2) : 223-232.DOI : 10.15740/HAS/ AJBS/12.2/223-232.
    [Show full text]