Erates with the Tumor Suppressor Protein Ras Association Domain Family 1A (RASSF1A) to Promote

Total Page:16

File Type:pdf, Size:1020Kb

Erates with the Tumor Suppressor Protein Ras Association Domain Family 1A (RASSF1A) to Promote University of Alberta MOAP-1: A Candidate Tumor Suppressor Protein by Jennifer Law A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science Biochemistry ©Jennifer Law Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. ABSTRACT Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays a key role in death receptor-dependent apoptosis and cooperates with the tumor suppressor protein Ras association domain family 1A (RASSF1A) to promote Bax activation during cell death. Although loss of RASSF1A expression is frequently observed in human cancers, it is currently unknown if MOAP-1 expression may also be affected during carcinogenesis to result in uncontrolled malignant growth. Therefore, we sought to investigate the role of MOAP-1 in cancer development. Here, we demonstrate that MOAP-1 can effectively inhibit cell proliferation both in vitro and in vivo and undergoes frequent loss of expression during carcinogenesis. The ability of MOAP-1 to suppress tumor formation requires protein kinase C (PKC)-dependent non-degradative ubiquitination at lysine residue K278 and may involve the novel MOAP-1- interacting protein receptor for activated C-kinase 1 (RACK1). Our data indicate that MOAP-1 is a candidate tumor suppressor protein regulated by PKC- dependent ubiquitination. TABLE OF CONTENTS CHAPTER 1 ........................................................................................................... 1 INTRODUCTION .................................................................................................. 1 1.1. TUMOR SUPPRESSOR PROTEINS ............................................................. 2 1.1.1. Oncogenes versus tumor suppressors ....................................................... 2 1.1.2. A brief history on tumor suppressor proteins ........................................... 4 1.1.3. Classic tumor suppressor proteins pRb and p53 ....................................... 5 1.1.4. Knudson’s two-hit hypothesis ................................................................... 8 1.1.5. Loss of heterozygosity .............................................................................. 9 1.1.6. Haploinsufficiency .................................................................................... 9 1.2. RAS ASSOCIATION DOMAIN FAMILY OF PROTEINS ........................ 10 1.2.1. RASSF1 .................................................................................................. 11 1.2.2. Biological functions of RASSF1A .......................................................... 14 1.2.3. Tumor suppressor and Ras binding properties of additional RASSF family members ................................................................................................ 17 1.3. APOPTOSIS .................................................................................................. 20 1.3.1. Caspases .................................................................................................. 21 1.3.2. Pathways to apoptosis ............................................................................. 24 1.3.3. Intrinsic cell death ................................................................................... 24 1.3.3.1. Role of the mitochondria.................................................................. 24 1.3.3.2. Bcl-2 family of proteins ................................................................... 25 1.3.4. Extrinsic cell death .................................................................................. 28 1.3.4.1. Death receptors and ligands ............................................................. 28 1.3.4.2. Type I and type II cells .................................................................... 30 1.3.5. Disposal of cells following apoptosis ..................................................... 30 1.4. MODULATOR OF APOPTOSIS-1 (MOAP-1) ............................................ 31 1.4.1. Interaction of MOAP-1 with Bcl-2 family members .............................. 32 1.4.2. Cooperation of MOAP-1 with RASSF1A in death receptor-mediated apoptosis ........................................................................................................... 33 1.4.3. Regulation of MOAP-1 stability by apoptotic signals ............................ 36 1.4.4. Paraneoplastic antigens ........................................................................... 37 1.4.4.1. PNMA protein family ...................................................................... 38 1.5. RECEPTOR FOR ACTIVATED C-KINASE 1 (RACK1) ........................... 39 1.5.1. RACK proteins as PKC adaptors ............................................................ 39 1.5.2. RACK1 scaffold protein ......................................................................... 40 1.5.3. Regulation of protein translation by RACK1 ......................................... 41 1.5.4. Role of RACK1 in apoptosis .................................................................. 43 1.5.5. Involvement of PKC and RACK1 in cancer ........................................... 44 1.6. UBIQUITINATION ...................................................................................... 46 1.6.1. Ubiquitin ................................................................................................. 46 1.6.2. Ubiquitination process and enzymes ...................................................... 47 1.6.3. Ubiquitination signals ............................................................................. 48 1.6.4. Ubiquitin chain assembly ........................................................................ 50 1.6.5. The ubiquitin-proteasome system ........................................................... 52 1.6.6. Ubiquitin-mediated non-proteolytic signaling ........................................ 54 1.7. RESEARCH OBJECTIVES .......................................................................... 56 CHAPTER 2 ......................................................................................................... 57 MATERIALS AND METHODS .......................................................................... 57 2.1. Cell lines ........................................................................................................ 58 2.2. DNA transfection ........................................................................................... 60 2.2.1. DNA plasmids ......................................................................................... 60 2.2.2. DNA transfection protocol ...................................................................... 60 2.3. Protein methodology ...................................................................................... 61 2.3.1. Antibodies ............................................................................................... 61 2.3.2. Cell lysis and immunoprecipitation ........................................................ 63 2.3.3. SDS-polyacrylamide gel electrophoresis ................................................ 63 2.3.4. Gel transfer techniques............................................................................ 64 2.3.4.1. Semi-dry transfer.............................................................................. 64 2.3.4.2. Wet transfer ...................................................................................... 64 2.3.5. Western blotting ...................................................................................... 65 2.4. Fixed-cell immunofluorescence confocal microscopy .................................. 65 2.5. Calf intestinal phosphatase treatment ............................................................ 66 2.6. MTT cell proliferation assay .......................................................................... 67 2.7. Apoptosis detection assay by fluorescence-activated cell sorting ................. 67 2.8. Animal Experiments ...................................................................................... 68 2.8.1. Mouse splenocyte isolation ..................................................................... 68 2.8.2. Xenograft tumor assays ........................................................................... 69 2.9. Microarray Analyses ...................................................................................... 69 2.9.1. Oncomine meta-analysis of human cancer microarrays ......................... 69 2.9.2. MOAP-1 and RASSF1A expression analysis in neuroblastoma patients 70 2.9.3. Analysis of MOAP-1 expression in breast cancer patients ..................... 70 2.9.4. Gene expression profiling of human tumor xenografts .......................... 72 2.9.4.1. Canonical pathway and biological function analysis of xenograft gene expression changes ..............................................................................
Recommended publications
  • 14-3-3Sigma Negatively Regulates the Stability and Subcellular Localization of Cop1
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2010 14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1 Chun-Hui Su Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biology Commons Recommended Citation Su, Chun-Hui, "14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 101. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/101 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. 14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1 By Chun-Hui Su, M.S. APPROVED: ______________________________ Mong-Hong Lee, Supervisory Professor ______________________________ Randy
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • TET2 Repression by Androgen Hormone Regulates Global Hydroxymethylation Status and Prostate Cancer Progression
    ARTICLE Received 5 Oct 2014 | Accepted 30 Jul 2015 | Published 25 Sep 2015 DOI: 10.1038/ncomms9219 TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression Ken-ichi Takayama1,2,*, Aya Misawa1,*, Takashi Suzuki3, Kiyoshi Takagi3, Yoshihide Hayashizaki4,5, Tetsuya Fujimura6, Yukio Homma6, Satoru Takahashi7, Tomohiko Urano1,2 & Satoshi Inoue1,2,8 Modulation of epigenetic patterns has promising efficacy for treating cancer. 5-Hydro- xymethylated cytosine (5-hmC) is an epigenetic mark potentially important in cancer. Here we report that 5-hmC is an epigenetic hallmark of prostate cancer (PCa) progression. A member of the ten–eleven translocation (TET) proteins, which catalyse the oxidation of methylated cytosine (5-mC) to 5-hmC, TET2, is repressed by androgens in PCa. Androgen receptor (AR)-mediated induction of the miR-29 family, which targets TET2, are markedly enhanced in hormone refractory PCa (HRPC) and its high expression predicts poor outcome of PCa patients. Furthermore, decreased expression of miR-29b results in reduced tumour growth and increased TET2 expression in an animal model of HRPC. Interestingly, global 5-hmC modification regulated by miR-29b represses FOXA1 activity. A reduction in 5-hmC activates PCa-related key pathways such as mTOR and AR. Thus, DNA modification directly links the TET2-dependent epigenetic pathway regulated by AR to 5-hmC-mediated tumour progression. 1 Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan. 2 Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
    [Show full text]
  • Los Premios Nobel De Química
    Los premios Nobel de Química MATERIAL RECOPILADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO Los premios Nobel de Química El campo de la Química que más premios ha recibido es el de la Quí- mica Orgánica. Frederick Sanger es el único laurea- do que ganó el premio en dos oca- siones, en 1958 y 1980. Otros dos también ganaron premios Nobel en otros campos: Marie Curie (física en El Premio Nobel de Química es entregado anual- 1903, química en 1911) y Linus Carl mente por la Academia Sueca a científicos que so- bresalen por sus contribuciones en el campo de la Pauling (química en 1954, paz en Física. 1962). Seis mujeres han ganado el Es uno de los cinco premios Nobel establecidos en premio: Marie Curie, Irène Joliot- el testamento de Alfred Nobel, en 1895, y que son dados a todos aquellos individuos que realizan Curie (1935), Dorothy Crowfoot Ho- contribuciones notables en la Química, la Física, la dgkin (1964), Ada Yonath (2009) y Literatura, la Paz y la Fisiología o Medicina. Emmanuelle Charpentier y Jennifer Según el testamento de Nobel, este reconocimien- to es administrado directamente por la Fundación Doudna (2020) Nobel y concedido por un comité conformado por Ha habido ocho años en los que no cinco miembros que son elegidos por la Real Aca- demia Sueca de las Ciencias. se entregó el premio Nobel de Quí- El primer Premio Nobel de Química fue otorgado mica, en algunas ocasiones por de- en 1901 al holandés Jacobus Henricus van't Hoff. clararse desierto y en otras por la Cada destinatario recibe una medalla, un diploma y situación de guerra mundial y el exi- un premio económico que ha variado a lo largo de los años.
    [Show full text]
  • Targeting EZH2 Increases Therapeutic Efficacy of PD-1 Check-Point Blockade in Models of Prostate Cancer Supplement Figures and T
    Targeting EZH2 Increases Therapeutic Efficacy of PD-1 Check-Point Blockade in Models of Prostate Cancer Supplement Figures and Tables 1 Fig. S1. (A) Schema and genotyping PCR example for the creation of EM and EMC genetically engineered mice. (B) Three-dimensional PCa organoids generated from EM mice (without PSACreERT2) alleles. When treated with tamoxifen, demonstrates no loss of H3K27me3 or EDU staining, indicating specificity of tamoxifen-PSACreERT2 mediated deletion of the Ezh2 set domain. (C) Principle component analysis (PCA) following chemical and genetic inhibition of Ezh2 catalytic function results in significant changes in gene expression. 2 Fig. S2. (A) A 29-gene signature derived from Fig. 1C demonstrates complete independence from a previously published polycomb repression signature. (B) Our 29 gene signature demonstrates significant correlation with a previously published polycomb repression signature in 2 independent human PCa gene expression datasets. (C) EZH2 activity is not determined by EZH2 mRNA expression. 3 Fig. S3. A 29-gene signature derived from Fig 1C was used to generate signature scores for each patient within four independent human prostate cancer RNA-seq datasets. Patients were ranked highest score to lowest score and subject to quartile separation. First (blue) and fourth (red) quartiles were analyzed by supervised clustering to demonstrate expression differences within patients with most lowest EZH2 activity and most highest EZH2 activity. 4 Fig. S4. Genes representing IFN signaling (STAT1, IRF9), Th1 chemokines (CXCL10, CXCL11), and MHC Class I molecules (B2M, HLA-A) were shown to be enriched in PCa patients with low EZH2 activity. 5 Fig. S5. Treatment of 22Rv1 human 2D cell lines with the demonstrated conditions for 96 hours show that EZH2 inhibition increases expression of dsRNA (green = dsRNA, blue = nuclei).
    [Show full text]
  • The Elie Wiesel Foundation for Humanity Nobel
    THE ELIE WIESEL FOUNDATION FOR HUMANITY NOBEL LAUREATES INITIATIVE September 9, 2005 TO: Kansas State Board of Education We, Nobel Laureates, are writing in defense of science. We reject efforts by the proponents of so-called “intelligent design” to politicize scientific inquiry and urge the Kansas State Board of Education to maintain Darwinian evolution as the sole curriculum and science standard in the State of Kansas. The United States has come a long way since John T. Scopes was convicted for teaching the theory of evolution 80 years ago. We are, therefore, troubled that Darwinism was described as “dangerous dogma” at one of your hearings. We are also concerned by the Board’s recommendation of August 8, 2005 to allow standards that include greater criticism of evolution. Logically derived from confirmable evidence, evolution is understood to be the result of an unguided, unplanned process of random variation and natural selection. As the foundation of modern biology, its indispensable role has been further strengthened by the capacity to study DNA. In contrast, intelligent design is fundamentally unscientific; it cannot be tested as scientific theory because its central conclusion is based on belief in the intervention of a supernatural agent. Differences exist between scientific and spiritual world views, but there is no need to blur the distinction between the two. Nor is there need for conflict between the theory of evolution and religious faith. Science and faith are not mutually exclusive. Neither should feel threatened by the other. When it meets in October, 2005, we urge the Kansas State Board of Education to vote against the latest draft of standards, which propose including intelligent design in academic curriculum.
    [Show full text]
  • Detection of Differentially Expressed Candidate Genes for a Fatty Liver QTL
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Kobayashi et al. BMC Genetics (2016) 17:73 DOI 10.1186/s12863-016-0385-2 RESEARCH ARTICLE Open Access Detection of differentially expressed candidate genes for a fatty liver QTL on mouse chromosome 12 Misato Kobayashi1, Miyako Suzuki1, Tamio Ohno2, Kana Tsuzuki1, Chie Taguchi1, Soushi Tateishi1, Teruo Kawada3, Young-il Kim3, Atsushi Murai1 and Fumihiko Horio1,4* Abstract Background: The SMXA-5 mouse is an animal model of high-fat diet-induced fatty liver. The major QTL for fatty liver, Fl1sa on chromosome 12, was identified in a SM/J × SMXA-5 intercross. The SMXA-5 genome consists of the SM/J and A/J genomes, and the A/J allele of Fl1sa is a fatty liver-susceptibility allele. The existence of the responsible genes for fatty liver within Fl1sa was confirmed in A/J-12SM consomic mice. The aim of this study was to identify candidate genes for Fl1sa, and to investigate whether the identified genes affect the lipid metabolism. Results: A/J-12SM mice showed a significantly lower liver triglyceride content compared to A/J mice when fed the high-fat diet for 7 weeks. We detected differences in the accumulation of liver lipids in response to the high-fat diet between A/J and A/J-12SM consomic mice. To identify candidate genes for Fl1sa, we performed DNA microarray analysis using the livers of A/J-12SM and A/J mice fed the high-fat diet. The mRNA levels of three genes (Iah1, Rrm2, Prkd1) in the chromosomal region of Fl1sa were significantly different between the strains.
    [Show full text]
  • Autism and Cancer Share Risk Genes, Pathways, and Drug Targets
    TIGS 1255 No. of Pages 8 Forum Table 1 summarizes the characteristics of unclear whether this is related to its signal- Autism and Cancer risk genes for ASD that are also risk genes ing function or a consequence of a second for cancers, extending the original finding independent PTEN activity, but this dual Share Risk Genes, that the PI3K-Akt-mTOR signaling axis function may provide the rationale for the (involving PTEN, FMR1, NF1, TSC1, and dominant role of PTEN in cancer and Pathways, and Drug TSC2) was associated with inherited risk autism. Other genes encoding common Targets for both cancer and ASD [6–9]. Recent tumor signaling pathways include MET8[1_TD$IF],[2_TD$IF] genome-wide exome-sequencing studies PTK7, and HRAS, while p53, AKT, mTOR, Jacqueline N. Crawley,1,2,* of de novo variants in ASD and cancer WNT, NOTCH, and MAPK are compo- Wolf-Dietrich Heyer,3,4 and have begun to uncover considerable addi- nents of signaling pathways regulating Janine M. LaSalle1,4,5 tional overlap. What is surprising about the the nuclear factors described above. genes in Table 1 is not necessarily the Autism is a neurodevelopmental number of risk genes found in both autism Autism is comorbid with several mono- and cancer, but the shared functions of genic neurodevelopmental disorders, disorder, diagnosed behaviorally genes in chromatin remodeling and including Fragile X (FMR1), Rett syndrome by social and communication genome maintenance, transcription fac- (MECP2), Phelan-McDermid (SHANK3), fi de cits, repetitive behaviors, tors, and signal transduction pathways 15q duplication syndrome (UBE3A), and restricted interests. Recent leading to nuclear changes [7,8].
    [Show full text]
  • Global Analysis of O-Glcnac Glycoproteins in Activated Human T Cells Peder J
    Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells Peder J. Lund, Joshua E. Elias and Mark M. Davis This information is current as J Immunol 2016; 197:3086-3098; Prepublished online 21 of October 2, 2021. September 2016; doi: 10.4049/jimmunol.1502031 http://www.jimmunol.org/content/197/8/3086 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/09/20/jimmunol.150203 Material 1.DCSupplemental References This article cites 89 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/197/8/3086.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells Peder J.
    [Show full text]
  • Programme 70Th Lindau Nobel Laureate Meeting 27 June - 2 July 2021
    70 Programme 70th Lindau Nobel Laureate Meeting 27 June - 2 July 2021 Sessions Speakers Access Background Scientific sessions, Nobel Laureates, Clear guidance Everything else social functions, young scientists, to all viewing there is to know partner events, invited experts, and participation for a successful networking breaks moderators options meeting 2 Welcome Two months ago, everything was well on course to celebrate And yet: this interdisciplinary our 70th anniversary with you, in Lindau. anniversary meeting will feature But with the safety and health of all our participants being the most rich and versatile programme ever. of paramount importance, we were left with only one choice: It will provide plenty of opportunity to educate, inspire, go online. connect – and to celebrate! Join us. 4 PARTICIPATING LAUREATES 4 PARTICIPATING LAUREATES 5 Henry A. Joachim Donna George P. Hartmut Michael M. Adam Hiroshi Kissinger Frank Strickland Smith Michel Rosbash Riess Amano Jeffrey A. Peter Richard R. James P. Randy W. Brian K. Barry C. Dean Agre Schrock Allison Schekman Kobilka Barish John L. Harvey J. Robert H. J. Michael Martin J. Hall Alter Grubbs Kosterlitz Evans F. Duncan David J. Ben L. Edmond H. Carlo Brian P. Kailash Elizabeth Haldane Gross Feringa Fischer Rubbia Schmidt Satyarthi Blackburn Robert B. Reinhard Aaron Walter Barry J. Harald Takaaki Laughlin Genzel Ciechanover Gilbert Marshall zur Hausen Kajita Christiane Serge Steven Françoise Didier Martin Nüsslein- Haroche Chu Barré-Sinoussi Queloz Chalfie Volhard Anthony J. Gregg L. Robert J. Saul Klaus William G. Leggett Semenza Lefkowitz Perlmutter von Klitzing Kaelin Jr. Stefan W. Thomas C. Emmanuelle Kurt Ada Konstantin S.
    [Show full text]