Journal of Earth and Environmental Sciences Review Article Hutter K and Gross D. J Earth Environ Sci 7: 174. DOI: 10.29011/2577-0640.100174 Brief Historical Tour of Glacier Ice on Earth and its Role in Climate Dynamics1 Kolumban Hutter1*, Dietmar Gross1 Department of Mechanics, Darmstadt University of Technology, Darmstadt, Germany *Corresponding author: Kolumban Hutter, Department of Mechanics, Darmstadt University of Technology, Darmstadt, Germany. Email:
[email protected] Citation: Hutter K and Gross D (2019) Brief Historical Tour of Glacier Ice on Earth and its Role in Climate Dynamics. J Earth Environ Sci 7: 174. DOI: 10.29011/2577-0640.100174 Received Date: 18 June, 2019; Accepted Date: 17 July, 2019; Published Date: 25 July, 2019 Abstract The science of the physics of ice crystals started almost 500 years ago with Cardano, followed by Kepler, Hooke, Dalton, the two Braggs (father and son) and Pauling. Here, we are concerned with naturally formed ice of glaciers, ice sheets and ice shelves. We do not discuss lake, river, sea and atmospheric ices, even though they equally play a role in today’s General Circulation Models (GCMs) for the Earth. The study of glacier ice started with the observation of the behavior of the dynamics of Alpine glaciers, specifically that they are not rigid, but moving bodies that deform. A ladder, left in 1788 at the icefall of the Col de Géant by de Saussure was 44 years later found at the three-glacier merge of the Mer de Glace, corresponding to a mean velocity of 375 feet/year. Hugi and Agassiz measured the motion of rocks on the middle moraine of the Unteraar-gletscher and found similar values.