Future Scientific Calculator Assignment Graphical User Interface

Total Page:16

File Type:pdf, Size:1020Kb

Future Scientific Calculator Assignment Graphical User Interface Future Scientific Calculator Assignment Graphical User Interface Wina Yanti & Zikroh Nafiah Creative Digital Design Background A scientific calculator is a type of calculator that is designed to calculate problems in science, engineering, and mathematics. It has the ability to calculate complex mathematic functions and it is widely used for higher educations and professionals. Nowadays, scientific calculators have become more complex and advanced. In terms of forms, it comes in various platforms including physical, mobile-based, web-based, and computer programs. In terms of functions and features, it comes with the ability to create graph, read digital hand-writing, and even scan photographs. Scientific calculator has really transformed the way its users perform complex calculations. With all advancement and its outstanding abilities, however, scientific calculator still lacks one critical quality: the ability to understand users. Many people find it complicated in using scientific calculators for solving complex mathematics functions. It is because solving complex calculations requires the users to understand the “language” of the scientific calculator. The user can only learn the language through the manuals, and it is not something pleasing to read. Based on the problem above, we are here to propose a conceptual design of future scientific calculator. With the development of User Interface, as well as Graphical User Interface, we think that this is the time for scientific calculator to provide better user interface, and create a more comfortable experience for its users. We would like to create a scientific calculator that has better understanding of what the users want and need. In this report, we will explain our steps and findings in creating this scientific calculator, as well as the design, in the form of low fidelity prototype. User Experiences and Requirements The first thing that we did in creating our future scientific calculator is observing user experiences and identifying user requirements. In order to find out those information, we conducted a small survey using online questionnaire. We asked 10 selected potential users a series of questions about their experiences in using scientific calculators, as well as what they actually want from scientific calculator. These potential users are including high school students, university students from science faculty, and university students from business faculty. Here are the questions of User Experience survey, as well as the summary of its answers. Are you using Scientific Calculator? Yes No How long have you been using Scientific Calculator? 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 1 Year More Than 3 More Than 4 5 Years 6 Years 7 Years 15 Tahun Years Years Number of people How often do you use Scientific Calculator? 3,5 3 2,5 2 1,5 1 0,5 0 When there is exam or Everyday Around 4-5 Days A Around 2-3 Days A Around Once A Week assignment Week Week Number of people What form of Scientific Calculator have you been using? Online Web Computer Software Mobile Application Physical 0 1 2 3 4 5 6 7 8 9 10 Number of people When you are choosing Scientific Calculator, what are the things that come to your consideration? Price Functions and Calculation Complexity Ability to Draw Graph Attractive Appearance Accessible Everywhere Strong Case After asking the participants about their experiences in using Scientific Calculator, next, we were asking questions related to the things that our participants want from their Scientific Calculator. In this part of the survey, we are using open-ended questions, therefore the participants are free to write what they have in mind. Here are the questions of User Requirements survey, as well as the summary of its answers. Question: In terms of features and functions, what are the things that need to be fixed/improved from your current Scientific Calculator? Summary of Answers: • Lack of complex calculations • No graphs • Durability • Battery durability • Adding tutorials for usage • Complicated to change calculation mode • Text on the buttons are easy to fade • Some functions of the calculator are hard to access Question: In terms of appearance and convenience, what are the things that need to be fixed/improved from your current Scientific Calculator? Summary of Answers: • Casing design and strength • More color choices • Make it smaller and thinner • Bigger screen • Some of the buttons are fragile and the texts are easy to fade • Make the shape to be more comfortable and futuristic • Make it more attractive, detail, and eye-catching Question: Have you ever seen/find a Scientific Calculator that is better than the one you are using now? What makes that Scientific Calculator better? Summary of Answers: Six out of ten participants answer Yes. The reasons are: • Having ability to form graph from equations • Having bigger screen • Having more complex functions and calculations • Having a display that is easier to read • Having ability to save data Question: If you are given a chance to create a Scientific Calculator for yourself, even if it seems impossible, what kind of features and functions that you want to put in your calculator? Summary of Answers: • Colored screen on physical calculator • Graph calculator with low price • Touchscreen calculator (not a mobile application) which doesn’t use any button • Calculator which can display calculation result like a projector and can connect to Wi-Fi • Games • Clearer log function • Accounting functions, apart from the scientific calculations • Photomath • Water resistant Question: How is the appearance of your Scientific Calculator going to be? Summary of Answers: • Small, thin, and light • Can be put in shirt’s pocket • Better text font flat button • Flexible • Comfortable to be held, easy to use, • Having simple input display but can execute complex calculation • Futuristic look • Durable • Having dark green color Conclusion on User Experiences and Requirements After reviewing the result on User Experiences and Requirements survey, we conclude some important requirements that we are going to put into our future scientific calculator. In terms of functions and features, our calculator should have the ability to display graph from equations, calculate complex functions, take pictures then translate the image into digital texts, and support the users with more accessible functions as well as tutorials. Meanwhile, in terms of appearance and convenience, our calculator should have bigger screen, colored display, touchscreen feature, more durable battery, flexible interface, as well as being light, small, and thin. Based on those requirements, we finally decided to create a mobile application of Scientific Calculator. It is a scientific calculator application that can be installed in smartphone. It has attractive design and better user interface. We call our scientific calculator as Cal-E. Sources of Inspiration In creating the conceptual design of the scientific calculator, we were also trying to find some comparison from existing scientific calculator. Scientific calculators that became our sources of inspiration are Photomath and Microsoft Mathematics. Photomath is a mobile application that can scan handwritten math problems using camera, and translate the images into digital form, then immediately solve it. The application also provides the steps of solving the problems which are very useful for users. Microsoft Mathematics, on the other hand, is a computer software that can translate equation into graphic form. It also supports digital hand-writing, in which the software can read hand-written math problem that are written using pen tablet. Photomath Microsoft Mathematics Conceptual Design Here is the conceptual design of our future scientific calculator, Cal-E. It has minimalist and futuristic design. It supports simple and complex calculations, graph drawing, as well as scanning photos into digital math problems. My Cal-E (Choose and change your calculator mode, by simple tap on the icon.) A circle-widget which provide user calculator mode they need. Although it uses icon, but the user does not have to remember since it accompanied by name to let them know what kind of calculator is. Also, to choose and change what calculator they need, simply tap the icon. Editable Expression (Make mistake, edit it right away) Also, if you have a mistake as you input the number just highlighted and input the new number because it is editable. Cancel/Correct Button (Done your first calculation, tap and do the new one) Instead having two buttons for cancel and correct the expression by doing different act, one button provides two functions. Press once to delete expression one by one and press longer to clear whole expression. Cal-E Mode (Customize your calculator mode, what mode available on the my cal-e.) The user can customize and re-arrange what kind of calculator that they want by simply tap two times in the middle, so it maximize the experience as the one who appear in my cal-e is the most used mode. Also, as we tap the calculator name, there will be explanation about what calculator is it. Photo Cal (Solve your mathematical problem expressions magically by using the camera of your mobile device in real time) This feature applies writing or hand writing recognition, which allow user to solve their mathematical problem, simply by point your camera. Then it will scan the problem and it will give an answer and step-by step process. Since it is real time there will be no photograph stored, but if user want to have their previous calculation, it will be stored in the history. Tutorial (First-time user? Find what you need to know here) For the first-time user or when you forgot how to use feature available, the tutorial will able to help you know; command to do, feature available, how and then through a simple but comprehension explanation. Setting (Choose and set your preference language and brightness of your Cal-E) Setting will allow the user to choose their language used in the application, now it only has two languages (English and Bahasa Indonesia).
Recommended publications
  • Implementation and Design of Calculator
    Implementation and Design of Calculator Submitted To: Sir. Muhammad Abdullah Submitted By: Muhammad Huzaifa Bashir 2013-EE-125 Department of Electrical Engineering University of Engineering and Technology, Lahore Contents Abstract ........................................................................................................................................... 2 Introduction ..................................................................................................................................... 3 Input Unit: ................................................................................................................................... 3 Processing Unit: .......................................................................................................................... 3 Output Unit: ................................................................................................................................ 3 Interfacing and Implementation ...................................................................................................... 4 LCD: ........................................................................................................................................... 4 Hardware Interfacing: ............................................................................................................. 4 Problem and Solution of hardware interfacing: ...................................................................... 4 Software Interfacing: .............................................................................................................
    [Show full text]
  • Computing Systems
    EECS 151/251A Homework 1 Due Friday, January 26th, 2018 Problem 1: Computing Systems A wide range of computing systems are currently in production. Consider the following devices when answering the questions below: a laptop, a digital watch, a scientific calculator, a supercomputer, and a smartphone. (a) Sketch a curve showing computational performance of all these systems as a function of their cost. Put performance on the y-axis (arbitrary units), and cost on the x-axis (dollar estimate). (b) Similarly, show a curve that relates computational performance to system power con- sumption, with performance on the y-axis (arbitrary units), and power consumption on the x-axis (watt estimate). In the case of the smartphone, ignore the power consumption of the radio. (a) Performance (IPS)! 1.E+16! Supercomputer! 1.E+14! 1.E+12! Laptop! 1.E+10! 1.E+08! Smartphone! 1.E+06! 1.E+04! 1.E+02! Scientific Calculator! Digital Watch! 1.E+00! 1.E+00! 1.E+01! 1.E+02! 1.E+03! 1.E+04! 1.E+05! 1.E+06! 1.E+07! 1.E+08! 1.E+09! Cost ($)! (b) Performance (IPS)! 1.E+16! Supercomputer! 1.E+14! 1.E+12! Laptop! 1.E+10! 1.E+08! Smartphone! 1.E+06! 1.E+04! Scientific Calculator! 1.E+02! Digital Watch! 1.E+00! 1.E-08! 1.E-06! 1.E-04! 1.E-02! 1.E+00! 1.E+02! 1.E+04! 1.E+06! Power Consumption (W)! EECS 151/251A Homework 1 2 Problem 2: Logic Consider the circuit below.
    [Show full text]
  • Samsung Galaxy J3 V J327V User Manual
    User guide. User guide. User usuario. Guía del Guía GH68-47432D Printed in USA Galaxy J7_COLL-78600-UG-PO-CVR-6x4-V3-F-R2R.indd All Pages 2/2/17 11:00 AM SMARTPHONE User Manual Please read this manual before operating your device and keep it for future reference. Table of Contents Special Features . 1 Navigation . 28 Side Speaker . 2 Entering Text . 30 Getting Started . 3 Multi Window . 33 Set Up Your Device . 4. Emergency Mode . 35 Assemble Your Device . .5 Apps . 37 Start Using Your Device . 10 Using Apps . 38 Set Up Your Device . 11 Applications Settings . 41 Learn About Your Device . .15 Calculator . 45 Front View . 16 Calendar . 46 Back View . .18 Camera and Video . 49 Home Screen . .19 Clock . 54 VZW_J727V_EN_UM_TN_QB1_031717_FINAL Contacts . 57 Connections . 104 Email . 64 Wi‑Fi . 105 Gallery . .67 Bluetooth . 108 Google Apps . 71 Data Usage . 111 Message+ . .74 Airplane Mode . 113 Messages . .77 Mobile Hotspot . .114 My Files . 82 Tethering . 117 Phone . 84 Mobile Networks . 117 S Health . 94 Location . 118 Samsung Gear . 96 Advanced Calling . .119 Samsung Notes . 97 Nearby Device Scanning . .121 Verizon Apps . 99 Phone Visibility . .121 Settings . 101 Printing . .121 How to Use Settings . 102 Virtual Private Networks (VPN) . .121 Change Carrier . 123 Table of Contents iii Data Plan . 123 Smart Alert . 133 Sounds and Vibration . 124 Display . 134 Sound Mode . 125 Screen Brightness . 135 Easy Mute . 125 Screen Zoom and Font . 135 Vibrations . 125 Home Screen . 136 Volume . 126. Easy Mode . 136 Ringtone . .127 Icon Frames . .137 Notification Sounds . 128 Status Bar . .137 Do Not Disturb . 128 Screen Timeout .
    [Show full text]
  • Calculating Solutions Powered by HP Learn More
    Issue 29, October 2012 Calculating solutions powered by HP These donations will go towards the advancement of education solutions for students worldwide. Learn more Gary Tenzer, a real estate investment banker from Los Angeles, has used HP calculators throughout his career in and outside of the office. Customer corner Richard J. Nelson Learn about what was discussed at the 39th Hewlett-Packard Handheld Conference (HHC) dedicated to HP calculators, held in Nashville, TN on September 22-23, 2012. Read more Palmer Hanson By using previously published data on calculating the digits of Pi, Palmer describes how this data is fit using a power function fit, linear fit and a weighted data power function fit. Check it out Richard J. Nelson Explore nine examples of measuring the current drawn by a calculator--a difficult measurement because of the requirement of inserting a meter into the power supply circuit. Learn more Namir Shammas Learn about the HP models that provide solver support and the scan range method of a multi-root solver. Read more Learn more about current articles and feedback from the latest Solve newsletter including a new One Minute Marvels and HP user community news. Read more Richard J. Nelson What do solutions of third degree equations, electrical impedance, electro-magnetic fields, light beams, and the imaginary unit have in common? Find out in this month's math review series. Explore now Welcome to the twenty-ninth edition of the HP Solve Download the PDF newsletter. Learn calculation concepts, get advice to help you version of articles succeed in the office or the classroom, and be the first to find out about new HP calculating solutions and special offers.
    [Show full text]
  • Calculator Policy
    CALCULATOR POLICY 1. Examination Candidates may take a non-programmable calculator into any component of the examination for their personal use. 2. Instruction booklets or cards (eg reference cards) on the operation of calculators are NOT permitted in the examination room. Candidates are expected to familiarise themselves with the calculator’s operation beforehand. 3. Calculators must have been switched off for entry into the examination room. 4. Calculators will be checked for compliance with this policy by the examination invigilator or observer. 5. Features of approved calculators: 5.1. In addition to the features of a basic (four operation) calculator, a scientific calculator typically includes the following: 5.1.1. fraction keys (for fraction arithmetic) 5.1.2. a percentage key 5.1.3. a π key 5.1.4. memory access keys 5.1.5. an EXP key and a sign change (+/-) key 5.1.6. square (x²) and square root (√) keys 5.1.7. logarithm and exponential keys (base 10 and base e) 5.1.8. a power key (ax, xy or similar) 5.1.9. trigonometrical function keys with an INVERSE key for the inverse functions 5.1.10. a capacity to work in both degree and radian mode 5.1.11. a reciprocal key (1/x) 5.1.12. permutation and/or combination keys ( nPr , nCr ) 5.1.13. cube and/or cube root keys 5.1.14. parentheses keys 5.1.15. statistical operations such as mean and standard deviation 5.1.16. metric or currency conversion 6. Features of calculators that are NOT permitted include: 6.1.
    [Show full text]
  • The Demise of the Slide Rule (And the Advent of Its Successors)
    OEVP/27-12-2002 The Demise of the Slide Rule (and the advent of its successors) Every text on slide rules describes in a last paragraph, sadly, that the demise of the slide rule was caused by the advent of the electronic pocket calculator. But what happened exactly at this turning point in the history of calculating instruments, and does the slide rule "aficionado" have a real cause for sadness over these events? For an adequate treatment of such questions, it is useful to consider in more detail some aspects like the actual usage of the slide rule, the performance of calculating instruments and the evolution of electronic calculators. Usage of Slide Rules During the first half of the 20th century, both slide rules and mechanical calculators were commercially available, mass-produced and at a reasonable price. The slide rule was very portable ("palmtop" in current speak, but without the batteries), could do transcendental functions like sine and logarithms (besides the basic multiplication and division), but required a certain understanding by the user. Ordinary people did not know how to use it straight away. The owner therefore derived from his knowledge a certain status, to be shown with a quick "what-if" calculation, out of his shirt pocket. The mechanical calculator, on the other hand, was large and heavy ("desktop" format), and had addition and subtraction as basic functions. Also multiplication and division were possible, in most cases as repeated addition or subtraction, although there were models (like the Millionaire) that could execute multiplications directly. For mechanical calculators there was no real equivalent of the profession-specific slide rule (e.g.
    [Show full text]
  • Scale Drawings, Similar Figures, Right Triangle Trigonometry
    SCALE DRAWINGS, SIMILAR FIGURES, RIGHT TRIANGLE TRIGONOMETRY In this unit, you will review ratio and proportion and solve problems related to scale drawings and similar figures. You will then investigate right triangle trigonometry. You will examine how trigonometry is derived from the angles and sides of right triangles and then apply “trig” functions to solve problems. Proportions Applications of Proportions Scale Drawings and Map Distances Similar Polygons Trigonometric Ratios Table of Trigonometric Ratios Map of Ohio Proportions A ratio is a comparison of two quantities and is often written as a fraction. For example, Emily is on the basketball team and during her first game she made 14 out of 20 shots. You can make a ratio out of shots made and shots attempted. shots made 14 7 == shots attempted 20 10 A proportion is any statement that two ratios are equal. For example, if Rachel is on the same basketball team as Emily, and she made 21 out of 30 baskets, Rachel’s ratio can be written as: shots made 21 7 == shots attempted 30 10 14 21 It can now be said that Emily’s ratio and Rachel’s ratio are equal. To prove this 20 30 we will use the “cross products property”. For all real numbers a, b, c, and d, where b ≠ 0 and d ≠ 0 . ac = if ad= bc bd Let’s take a look at Emily and Rachel’s ratios and use the cross product property to make sure they are equal. 14 21 = 20 30 14×=× 30 20 21 420= 420 true Use cross products to determine if the two ratios are proportional.
    [Show full text]
  • Scientific Calculator Apps As Alternative Tool in Solving
    INTERNATIONAL JOURNAL OF RESEARCH IN TECHNOLOGY AND MANAGEMENT (IJRTM) ISSN 2454-6240 www.ijrtm.com SCIENTIFIC CALCULATOR APPS AS ALTERNATIVE TOOL IN SOLVING TRIGONOMETRY PROBLEMS Maria Isabel Lucas, EdD, Pamantasan ng Lungsod ng Maynila, Manila, Philippines [email protected] ABSTRACT Mark Prensky (2001), the originator of the term digital The present 21st century students belong to the post- natives (Generation Y and Z) and digital immigrants, the millennial generation or Gen Z. They are considered predecessors of the millennials, cited that mathematics have to digital natives who have high penchant on ICT gadgets be reengineered to match the characteristics of the 21st century learners: particularly on smartphones which have already formed In math, for example, the debate must no longer be about part of their daily necessities. The teachers who are digital whether to use calculators and computers – they are a part of immigrants may capitalize this by integrating technology the Digital Natives‟ world – but rather how to use them to as a tool for teaching and learning to cater their learning instill the things that are useful to have internalized, from key needs and interests. Free applications are available both skills and concepts to the multiplication tables. We should be for android and iOS operating systems such as scientific focusing on “future math” – approximation, statistics, binary calculator apps. This study verifies whether the use of the thinking. (p.5) mobile application in computing Trigonometry problems is Practically, not all students in the local university where a good alternative to the commonly used handheld this study was conducted can afford to buy the commercial calculators using a quasi-experiment among 50 students of handheld calculator due to its relatively high cost.
    [Show full text]
  • EL-531W Scientific Calculator Operation Guide
    SSCCIIEENNTTIIFFIICC CCAALLCCUULLAATTOORR OOPPEERRAATTIIOONN GGUUIIDDEE <W Series> CO NTENTS HOW TO OPERATE Read Before Using Key layout/Reset switch 2 Display pattern 3 Display format 3 Exponent display 4 Angular unit 5 Function and Key Operation O N/O FF, entry correction keys 6 Data entry keys 7 Random key 8 Modify key 9 Basic arithmetic keys, parentheses 10 Percent 11 Inverse, square, cube, xth power of y, square root, cube root, xth root of y 12 10 to the power of x, common logarithm 13 e to the power of x, natural logarithm 14 Factorials 15 Permutations, combinations 16 Time calculation 17 Fractional calculations 18 Memory calculations ~ 19 Last answer memory 20 Trigonometric functions 21 Arc trigonometric functions 22 Hyperbolic functions 23 Coordinate conversion 24 Binary, pental, octal, decimal, and hexadecimal operations (N-base) 25 STATISTICS FUNCTION Data input and correction 26 “ANS” keys for 1-variable statistics 27 “ANS” keys for 2-variable statistics 31 1 H ow to O pe ra te ≈Read B efore Using≈ This operation guide has been written based on the EL-531W , EL-509W , and EL-531W H models. Some functions described here are not featured on other models. In addition, key operations and symbols on the display may differ according to the model. 1 . K E Y L AY O U T 2nd function key Pressing this key will enable the functions written in orange above the calculator buttons. ON/C, OFF key D irect function 2nd function <Power on> <Power off> W ritten in orange above the O N/C key Mode key This calculator can operate in three different modes as follows.
    [Show full text]
  • Online Calculators in the Test Delivery System
    Online Calculators in the Test Delivery System 2021–2022 Updated June 29, 2021 Prepared by Cambium Assessment, Inc. Descriptions of the operation of Cambium Assessment, Inc. (CAI) systems are property of Cambium Assessment, Inc. and are used with the permission of CAI. Table of Contents About Calculators in the Test Delivery System ........................................................................................................ 3 Standard Calculator ............................................................................................................................... 3 Scientific Calculator ............................................................................................................................... 3 Full Function Calculator ......................................................................................................................... 3 Accessing the Sample Calculators ............................................................................................................................ 4 Open a Sample Calculator on Windows/Mac/Linux .............................................................................. 4 Open a Sample Calculator on iPads ....................................................................................................... 6 2 About Calculators in the Test Delivery System Students are able to use an online calculator for some grades and subjects of the RISE Assessments as an alternative to handheld calculators, as allowed by the Utah State Board of Education. Starting
    [Show full text]
  • Scientific Calculator Operation Guide
    SSCIENTIFICCIENTIFIC CCALCULATORALCULATOR OOPERATIONPERATION GGUIDEUIDE < EL-W535TG/W516T > CONTENTS CIENTIFIC SSCIENTIFIC HOW TO OPERATE Read Before Using Arc trigonometric functions 38 Key layout 4 Hyperbolic functions 39-42 Reset switch/Display pattern 5 CALCULATORALCULATOR Coordinate conversion 43 C Display format and decimal setting function 5-6 Binary, pental, octal, decimal, and Exponent display 6 hexadecimal operations (N-base) 44 Angular unit 7 Differentiation calculation d/dx x 45-46 PERATION UIDE dx x OPERATION GUIDE Integration calculation 47-49 O G Functions and Key Operations ON/OFF, entry correction keys 8 Simultaneous calculation 50-52 Data entry keys 9 Polynomial equation 53-56 < EL-W535TG/W516T > Random key 10 Complex calculation i 57-58 DATA INS-D STAT Modify key 11 Statistics functions 59 Basic arithmetic keys, parentheses 12 Data input for 1-variable statistics 59 Percent 13 “ANS” keys for 1-variable statistics 60-61 Inverse, square, cube, xth power of y, Data correction 62 square root, cube root, xth root 14 Data input for 2-variable statistics 63 Power and radical root 15-17 “ANS” keys for 2-variable statistics 64-66 1 0 to the power of x, common logarithm, Matrix calculation 67-68 logarithm of x to base a 18 Exponential, logarithmic 19-21 e to the power of x, natural logarithm 22 Factorials 23 Permutations, combinations 24-26 Time calculation 27 Fractional calculations 28 Memory calculations ~ 29 Last answer memory 30 User-defined functions ~ 31 Absolute value 32 Trigonometric functions 33-37 2 CONTENTS HOW TO
    [Show full text]
  • Improving Calculus Learning Using a Scientific Calculator
    Open Education Studies, 2020; 2: 220–227 Research Article Miriam Dagan*, Pavel Satianov, Mina Teicher Improving Calculus Learning Using a Scientific Calculator https://doi.org/10.1515/edu-2020-0125 received July 2, 2020; accepted September 28, 2020. made possible with calculators. This includes not only the basic computational tools, but also their potential use in Abstract: This article discusses the use of a scientific enhancing conceptual understanding of mathematical calculator in teaching calculus by using representations concepts and approaches, essential for developing of mathematics notions in different sub-languages research and critical thinking by the student. (analytical, graphical, symbolical, verbal, numerical This is very important nowadays, because academic and computer language). Our long-term experience institutions have been dealing with the failure of students shows that this may have a positive and significant effect in the first year of their studies in general and especially on the enhancement of conceptual understanding of in mathematical courses (Lowe and Cook, 2003; Yorke and mathematical concepts and approaches. This transcends Longden, 2004). With technological advances and a large the basic computational uses, and implies a potential flow of students to STEM professions at universities and for real improvement in the learning success, cognitive colleges, there is a constant decline in the mathematical motivation and problem solving skills of the student. basic knowledge of the novice academic students (Gueudet, We illustrate the steps we have taken towards doing this 2013; Bosch, Fonseca & Gascon, 2004). Undergraduate through some examples. students have difficulties in understanding definitions and various representation of mathematical concepts. It is Keywords: scientific calculator; calculus teaching; because teaching and learning in high school is still based different representations; conceptual understanding; more on algorithmic exercises and memorization, rather cognitive motivation.
    [Show full text]