Deep Impact Cratering Module

Total Page:16

File Type:pdf, Size:1020Kb

Deep Impact Cratering Module Educational Product Educators Grades 8-10 &Students Exc^v^ting Cr^tering @ Deep Imp^ct Educ^tors' Guide Exc^v^ting Cr^tering @ Deep Imp^ct Educ^tors' Guide Gretchen Walker This publication is in the public domain and is not protected by copyright. Permission is not required for duplication. Module at a Glance Overview: Excavating Cratering is a two to three week student inquiry into the question "How do you make a 10 story, football field sized crater in a comet?" The lessons are designed to provide students with experience in conducting scientific inquiries, gain a greater understanding of scientific modeling and get the students involved with the excitement of a NASA mission in development. Table of Contents Notes on Format Each of the activity instructions follow the same Introduction basic format Overview: few sentence summary of the activity 1. Introduction to Module for Educators Standards: the specific standards addressed in 2. Standards Table the activity 3. Acknowledgements Estimated Time Requirement: Estimated time needed to complete activity Activities Materials: List of materials needed for the lesson Activity 1: Thinking About Cratering Background: Brief applicable scientific Activity 2: What Factors Influence Crater background information Size? Teacher Procedures: Step by step instructions Activity 3: Predicting Crater Size for carrying out the lesson. Activity 4: Cratering in the Classroom, Student Anticipations: Some hints as to what you might expect from your students in this The Lab, and the Solar System activity, things to watch for, beware of, and Activity 5: Cratering at the Comet encourage. Student Handouts, Teacher Overheads, Appendices Rubrics: Most handouts and other support material needed for the lesson can be found Appendix 1: Images of Cratering in the Solar System Appendix 2: Current Scientific Thinking About Cratering Basic Cratering Experiment Appendix 3: Deep Impact Cratering Science: Scientific Modeling in Action Supplies • trays (tin foil baking pans or other such Appendix 4: Deep Impact Project Journal containers, the deeper the better) Appendix 5: Communicating with the • sugar or sand Deep Impact Team • meter sticks • balances • collection of objects to use as projectiles - ball bearings, styrofoam balls, superballs, clay, etc Deep Imp^ct Module at a Glance 3 I m p ^ c t Excavating Cratering: A Deep Impact Education Module Introduction Excavating Cratering is a two to three week student and limits of scientific modeling as they compare inquiry into the question "How do you make a 10 their own low energy simulations, the work of Deep story, football field sized crater in a comet?" The Impact Science Team cratering experts, and cratering lessons are designed to provide students with on a solar system scale. experience in conducting scientific inquiries, gain a Finally, the students will use current greater understanding of scientific modeling and get information about comets, and the patterns they the students involved with the excitement of a NASA derived from their own investigations to give their mission in development. best answer to the initial question. These answers will be submitted to the Deep Impact Education and What's different about this module? Outreach team. Cratering is a favorite topic for space science teaching. Many interesting activities have Why this approach? been developed for other NASA missions and other The National Science Standards place a high curriculums. So why do another cratering module? value on inquiry in the science classroom. The first The Deep Impact team believes that the most content standard for all levels, K-12, is "All students important thing that a NASA mission has to offer the should develop abilities necessary to do scientific classroom is a look into the process of scientific inquiry and understandings about scientific inquiry." inquiry in action. This module is designed to give The first science teaching standard begins with students and teachers a structure for investigating one "teachers of science plan an inquiry-based science of the questions facing Deep Impact's mission design program for their students". Inquiry is often team, "How do you make a crater on a comet?" This discussed in teacher preparation programs as one of module is designed to use some aspects of the the preferred methods of instruction. Yet, inquiry familiar "drop the ball bearing in the flour" cratering does not exist in equal prevalence in the classroom. activities as a launching pad for an exploration of the Most science teachers can list reasons for the nature of ongoing science investigations and the discrepancy immediately. Inquiry takes more development of students' inquiry skills. This module classroom time. Inquiry is difficult to assess. Inquiry also takes these explorations a step further by doing creates a heavy planning burden. It is difficult to some mathematical modeling with the results, and operate in an inquiry mode and have a classroom that discussing the limitations of low energy classroom "looks like" what teachers and administrators often impacts as models of high energy solar system expect a classroom to "look like". This unit has been impacts. designed as an example of one example of what inquiry in the classroom might look like. Overview of module Cratering is a phenomenon that students have lots of ideas about. Most have experience with The activities are designed to model one throwing things against each other and the results of path that a scientific inquiry might take. The students those collisions. This module allows students to will begin by brainstorming what factors might explore their own ideas about how cratering might influence crater size and doing some initial work. They design experiments and look for patterns experimentation and exploration. They will evaluate in the data, not trying to match a set outcome from their suggestions and describe their initial ideas about the text book, but to try to reconcile their cratering phenomena. Next, they will design their understanding of what they think will happen with own experiments, testing one of the possible factors. what they see. It is important to note that the Emphasis will be placed on experiment design, designers of this curriculum believed that the primary limiting the test to one variable, and quantifying the goal of this module is to teach students methods of experiment. science inquiry, rather than develop a full modern After analyzing the data for patterns that understanding of cratering. The students explore and might be used to predict crater size from initial refine their own ideas, rather than "discover" the variables, the students will test those predictions, use "correct" answers. the results to refine their methods of prediction, and try again. The students will discuss the advantages Deep Imp^ct Activity 1: Thinking About Cratering 4 I m p ^ c t Excavating Cratering: A Deep Impact Education Module Standards Addressed National Science From the content standards for Grades 5-8 Education Standards All students should develop • Identify questions that can be answered through scientific investigations the abilities necessary to do • Design and conduct a scientific investigation scientific inquiry • Communicate scientific procedures • Develop descriptions, explanations, predictions, and models using evidence • Formulate and Revise scientific explanations and models using logic and evidence All students should develop • Scientists usually inquire about how physical, living, or designed systems understandings about function scientific inquiry • Scientists rely on technology to enhance data • Results of scientific inquiry emerge from different types of investigations and communications between scientists. All students should develop • Energy is a property of many substances and is associated with heat, light, an understanding of electricity, mechanical motion, sound, nuclei, and the nature of a chemical. transfer of energy • Energy is transferred in many ways All students should develop • The earth exists in a system that includes smaller bodies such as comets and an understanding of the asteroids Earth in the solar system Principals and Standards From the algebra and data analysis standards for Grades 6-8 for School Mathematics All students should be able • Make conjectures about possible relationships between two characteristics of a to develop inferences and sample on the basis of scatter plots of the data and approximate lines of fit; predictions that are based • Use conjectures to formulate new questions and plan new studies to answer them. on data All students should be able • Represent, analyze, and generalize a variety of patterns with tables, graphs, to understand patterns, words, and, when possible, symbolic rules; relations, and functions All students should be able • Use graphs to analyze the nature of changes in quantities in linear relationships. to analyze change All students should be able • Model and solve contextualized problems using various representations, such as to use mathematical models graphs, tables, and equations. to represent and understand quantitative relationships Deep Imp^ct Standards 5 I m p ^ c t Excavating Cratering: A Deep Impact Education Module Acknowledgements This module was made possible by the efforts of a team of educators, scientists, and students. Thank you to the teachers and students who gave their time and energy to initial pilot tests of this material: Stacy Satkofsky and the students of Lackey High School; Daniel Levin
Recommended publications
  • Deep Impact As a World Observatory Event Held in Brussels, Belgium, 7–10 August 2006
    Other Astronomical News Report on the Workshop on Deep Impact as a World Observatory Event held in Brussels, Belgium, 7–10 August 2006 Hans Ulrich Käufl1 One of the spectacular deconvolved images from the Christiaan Sterken2 Deep Impact Spacecraft High Resolution Imager shown in the conference (courtesy Mike A’Hearn and the Deep Impact Team). This is a colour composite of an infrared, a green and a violet filter forced to av- 1 ESO erage grey. Note the blueish areas on the surface 2 Vrije Universiteit Brussel, Belgium close to the crater-like structure. Those were entirely unexpected. It is highly interesting to find out if those structures can be correlated with the jets which were meticulously monitored from ground-based ob- In the context of NASA’s Deep Impact servers worldwide. This aspect in the picture – en- space mission, Comet 9P/Tempel1 tirely unrelated to the impact plume – illustrates very well how comet research, apart from the impact has been at the focus of an unprece- experiment, will profit from the synergy of spacecraft dented worldwide long-term multi- data and the unprecedented worldwide coordinated wavelength observation campaign. The observing campaign. comet has been studied through its perihelion passage by various spacecraft including the Deep Impact mission it- self, HST, Spitzer, Rosetta, XMM and all To make full use of the global data set, a To inspire new ideas, it was very helpful major ground-based observatories in workshop bringing together observers and interesting to have Roberta Olson basically all wavelength bands used in across the electromagnetic spectrum and from the New York Historical Society, astronomy, i.e.
    [Show full text]
  • Size of Particles Ejected from an Artificial Impact Crater on Asteroid
    A&A 647, A43 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039777 & © K. Wada et al. 2021 Astrophysics Size of particles ejected from an artificial impact crater on asteroid 162173 Ryugu K. Wada1, K. Ishibashi1, H. Kimura1, M. Arakawa2, H. Sawada3, K. Ogawa2,4, K. Shirai2, R. Honda5, Y. Iijima3, T. Kadono6, N. Sakatani7, Y. Mimasu3, T. Toda3, Y. Shimaki3, S. Nakazawa3, H. Hayakawa3, T. Saiki3, Y. Takagi8, H. Imamura3, C. Okamoto2, M. Hayakawa3, N. Hirata9, and H. Yano3 1 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan e-mail: [email protected] 2 Department of Planetology, Kobe University, Kobe 657-8501, Japan 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 4 JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 5 Department of Science and Technology, Kochi University, Kochi 780-8520, Japan 6 Department of Basic Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan 7 Department of Physics, Rikkyo University, Tokyo 171-8501, Japan 8 Aichi Toho University, Nagoya 465-8515, Japan 9 School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan Received 28 October 2020 / Accepted 26 January 2021 ABSTRACT A projectile accelerated by the Hayabusa2 Small Carry-on Impactor successfully produced an artificial impact crater with a final apparent diameter of 14:5 0:8 m on the surface of the near-Earth asteroid 162173 Ryugu on April 5, 2019. At the time of cratering, Deployable Camera 3 took± clear time-lapse images of the ejecta curtain, an assemblage of ejected particles forming a curtain-like structure emerging from the crater.
    [Show full text]
  • A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
    Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering).
    [Show full text]
  • EPOXI COMET ENCOUNTER FACT SHEET Nov
    EPOXI COMET ENCOUNTER FACT SHEET Nov. 2, 2010 Quick Facts Flyby Spacecraft Dimensions: 3.3 meters (10.8 feet) long, 1.7 meters (5.6 feet) wide, and 2.3 meters (7.5 feet) high Weight: 601 kilograms (1,325 pounds) at launch, consisting of 517 kilograms (1,140 pounds) spacecraft and 84 kilograms (185 pounds) fuel. On 10/25/10 there was 4 kilograms (8.8 pounds) of fuel remaining. Power: 2.8-meter-by-2.8-meter (9-foot-by-9 foot) solar panel providing up to 750 watts, depending on distance from sun. Power storage via small, 16-amp- hourrechargeable nickel hydrogen battery Comet Hartley 2 Nucleus shape: Elongated Nucleus size (estimated): About 2.2 kilometers (1.4 miles) long Nucleus mass: Roughly 280 million metric tons Nucleus rotation period: About 18 hours Nucleus composition: Water ice, carbon dioxide ice, silicate dust Mission Launch: Jan. 12, 2005 Launch site: Cape Canaveral Air Force Station, Florida Launch vehicle: Delta II 7925 with Star 48 upper stage Impact with Tempel 1: 10:52 p.m. PDT July 3, 2005 (1:52 a.m. EDT July 4, 2005) Earth-comet distance at time of impact: 133.6 million kilometers (83 million miles) Total distance traveled by spacecraft from Earth to Tempel 1: 431 million kilometers (268 million miles) Flyby of Hartley 2: About 10 a.m. EDT or 7 a.m. PDT Nov. 4, 2010 Additional distance traveled by spacecraft to Hartley 2: About 4.6 billion kilometers (2.9 billion miles) Program Cost of Deep Impact: $267 million total (not including launch vehicle), consisting of $252 million spacecraft development and $15 million mission operations Cost of EPOXI extended mission: $42 million, for operations from 2007 to end of project at the end of fiscal year 2011.
    [Show full text]
  • An Artificial Impact on the Asteroid (162173) Ryugu Formed a Crater in the Gravity-Dominated Regime M
    An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, K. Shirai, H. Sawada, K. Ishibashi, R. Honda, N. Sakatani, et al. To cite this version: M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, et al.. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, American Association for the Advancement of Science, 2020, 368 (6486), pp.67-71. 10.1126/science.aaz1701. hal-02986191 HAL Id: hal-02986191 https://hal.archives-ouvertes.fr/hal-02986191 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted Manuscript Title: An artificial impact on the asteroid 162173 Ryugu formed a crater in the gravity-dominated regime Authors: M. Arakawa1*, T. Saiki2, K. Wada3, K. Ogawa21,1, T. Kadono4, K. Shirai2,1, H. Sawada2, K. Ishibashi3, R. Honda5, N. Sakatani2, Y. Iijima2§, C. Okamoto1§, H. Yano2, Y. 5 Takagi6, M. Hayakawa2, P. Michel7, M. Jutzi8, Y. Shimaki2, S. Kimura9, Y. Mimasu2, T. Toda2, H. Imamura2, S. Nakazawa2, H. Hayakawa2, S.
    [Show full text]
  • Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
    Space Sci Rev DOI 10.1007/s11214-016-0286-8 Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2 Tatsuaki Okada 1,2 · Tetsuya Fukuhara3 · Satoshi Tanaka1 · Makoto Taguchi3 · Takeshi Imamura4 · Takehiko Arai 1 · Hiroki Senshu5 · Yoshiko Ogawa6 · Hirohide Demura6 · Kohei Kitazato6 · Ryosuke Nakamura7 · Toru Kouyama7 · Tomohiko Sekiguchi8 · Sunao Hasegawa1 · Tsuneo Matsunaga9 · Takehiko Wada1 · Jun Takita2 · Naoya Sakatani1 · Yamato Horikawa10 · Ken Endo6 · Jörn Helbert11 · Thomas G. Müller12 · Axel Hagermann13 Received: 24 September 2015 / Accepted: 31 August 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The thermal infrared imager TIR onboard Hayabusa2 has been developed to in- vestigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to pro- vide information on surface physical properties and conditions for sampling site selection B T. Okada [email protected] 1 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan 2 Graduate School of Science, The University of Tokyo, Bunkyo Tokyo, Japan 3 Rikkyo University, Tokyo, Japan 4 Graduate School of Frontiers Sciences, The University of Tokyo Kashiwa, Japan 5 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan 6 Center
    [Show full text]
  • Dawn Mission to Vesta and Ceres Symbiosis Between Terrestrial Observations and Robotic Exploration
    Earth Moon Planet (2007) 101:65–91 DOI 10.1007/s11038-007-9151-9 Dawn Mission to Vesta and Ceres Symbiosis between Terrestrial Observations and Robotic Exploration C. T. Russell Æ F. Capaccioni Æ A. Coradini Æ M. C. De Sanctis Æ W. C. Feldman Æ R. Jaumann Æ H. U. Keller Æ T. B. McCord Æ L. A. McFadden Æ S. Mottola Æ C. M. Pieters Æ T. H. Prettyman Æ C. A. Raymond Æ M. V. Sykes Æ D. E. Smith Æ M. T. Zuber Received: 21 August 2007 / Accepted: 22 August 2007 / Published online: 14 September 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin C. T. Russell (&) IGPP & ESS, UCLA, Los Angeles, CA 90095-1567, USA e-mail: [email protected] F.
    [Show full text]
  • Planetary Science Update
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division October 11, 2017 Presentation at LEAG Planetary Science Missions Events 2016 March – Launch of ESA’s ExoMars Trace Gas Orbiter July 4 – Juno inserted in Jupiter orbit * Completed September 8 – Launch of Asteroid mission OSIRIS – REx to asteroid Bennu September 30 – Landing Rosetta on comet CG October 19 – ExoMars EDM landing and TGO orbit insertion 2017 January 4 – Discovery Mission selection announced February 9-20 - OSIRIS-REx began Earth-Trojan search April 22 – Cassini begins plane change maneuver for the “Grand Finale” August 22 – Solar Eclipse across America September 15 – Cassini end of mission at Saturn September 22 – OSIRIS-REx Earth flyby October 28 – International Observe the Moon night (1st quarter) 2018 May 5 - Launch InSight mission to Mars August – OSIRIS-REx arrival at Bennu October – Launch of ESA’s BepiColombo to Mercury November 26 – InSight landing on Mars 2019 January 1 – New Horizons flyby of Kuiper Belt object 2014MU69 Formulation Implementation Primary Ops BepiColombo Lunar Extended Ops (ESA) Reconnaissance Orbiter Lucy New Horizons Psyche Juno Dawn JUICE (ESA) ExoMars 2016 MMX MAVEN MRO (ESA) (JAXA) Mars Express Mars (ESA) Odyssey OSIRIS-REx ExoMars 2020 (ESA) Mars Rover Opportunity Curiosity InSight 2020 Rover Rover NEOWISE Europa Clipper Discovery Program Discovery Program NEO characteristics: Mars evolution: Lunar formation: Nature of dust/coma: Solar wind sampling: NEAR (1996-1999) Mars Pathfinder (1996-1997) Lunar Prospector
    [Show full text]
  • Rosetta Monitors Deep Impact 20 June 2005
    Rosetta monitors Deep Impact 20 June 2005 space. The observing geometry will be favourable for observations with Rosetta’s microwave spectrometer, MIRO, and the VIRTIS visual and IR mapping spectrometer. MIRO will concentrate on the chemical composition and temperature of the gas. VIRTIS will analyse thermal emission by the comet to determine the composition of the dust ejected, and thus reveal the comet’s mineralogy. In addition, Rosetta will be the spacecraft carrying the best available ultraviolet instrument, ALICE, to monitor the event. ALICE will analyse the gas coming from the impact and tell about its chemical composition. The Rosetta OSIRIS imaging system will also provide images of the comet’s nucleus from a far- away distance. Scientists also hope to make a 3D ESA’s comet chaser Rosetta will take part in one reconstruction of the dust cloud around the comet of the world’s largest astronomical observation by combining the OSIRIS images with those taken campaigns - the Deep Impact event - while on its from ground observatories. cruise to Comet 69P/Churyumov-Gerasimenko. Rosetta will be watching from 29 June to 14 July Rosetta’s observations will provide a unique data 2005. set complementary to the observations from the Deep Impact spacecraft and the ground-based Image: Artist's impression of the Rosetta telescopes. Before impact, Rosetta will observe spacecraft Tempel 1 during three full rotations of the comet around its axis. This allows characterising the Deep Impact is a NASA mission to send a 370 kg variations of the comet’s state over rotation and copper ‘impactor’ probe to Comet 9P/Tempel 1 time, and preparing for the observations during and on 4 July 2005.
    [Show full text]
  • Article 12 Mars Reconnaissance Orbiter Telecommunications
    DESCANSO Design and Performance Summary Series Article 12 Mars Reconnaissance Orbiter Telecommunications Jim Taylor Dennis K. Lee Shervin Shambayati Jet Propulsion Laboratory California Institute of Technology Pasadena, California National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California September 2006 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Prologue Mars Reconnaissance Orbiter The cover image is an artist’s rendition of the Mars Reconnaissance Orbiter (MRO) as its orbit carries it over the Martian pole. The large, articulated, circularly shaped high-gain antenna above the two articulated paddle-shaped solar panels points at the Earth as the solar panels point toward the Sun. This antenna is the most noticeable feature of the communications system, providing a link for receiving commands from the Deep Space Stations on the Earth and for sending science and engineering information to the stations. The antenna is larger than on any previous deep-space mission, and the amplifiers that send the data on two frequencies are also more powerful than previously used in deep space. Included in the command data and the science data is information that the orbiter relays to and from vehicles on the surface as it passes over them. The orbiter uses the Electra transceiver and a smaller low-gain antenna for this communication. The antenna is the smaller. gold-colored cylinder pointed toward the surface. The transceiver is the first Electra flown, and it has the capability to communicate efficiently with surface vehicles such as Phoenix and Mars Science Laboratory.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division June 29, 2016 Presentation at SBAG Outline • Mission Overview • Discovery Program • New Frontiers Programs • Mars Exploration Program • NRC studies and schedule for the mid- term Planetary Science Missions Events 2014 July – Mars 2020 Rover instrument selection announcement * Completed August 6 – 2nd Year Anniversary of Curiosity Landing on Mars September 21 – MAVEN inserted in Mars orbit October 19 – Comet Siding Spring encountered Mars September – Curiosity arrives at Mt. Sharp November 12 – ESA’s Rosetta mission lands on Comet Churyumov–Gerasimenko December 2/3 – Launch of Hayabusa-2 to asteroid 1999 JU3 2015 March 6 – Dawn inserted into orbit around dwarf planet Ceres April 30 – MESSENGER spacecraft impacted Mercury May 26 – Europa instrument Step 1 selection July 14 – New Horizons flies through the Pluto system September – Discovery 2014 Step 1 selection December 6 – Akatsuki inserted into orbit around Venus 2016 March – Launch of ESA’s ExoMars Trace Gas Orbiter July 4 – Juno inserted in Jupiter orbit July 20 – 40th Anniversary of the Viking missions September 8 – Launch of Asteroid mission OSIRIS – REx to asteroid Bennu Cassini begins plane change maneuver for the “Grand Finale” Late 2016 – Discovery 2014 Step 2 selection Discovery Program Discovery Program Mars evolution: Lunar formation: NEO characteristics: Solar wind sampling: Mars Pathfinder (1996-1997) Lunar Prospector (1998-1999) NEAR (1996-1999) Genesis (2001-2004) Completed Comet diversity:
    [Show full text]
  • The Rosetta Mission: Flying Towards the Origin of the Solar System
    THE ROSETTA MISSION: FLYING TOWARDS THE ORIGIN OF THE SOLAR SYSTEM KARL-HEINZ GLASSMEIER1, HERMANN BOEHNHARDT2, DETLEF KOSCHNY3, EKKEHARD KUHRT¨ 4 and INGO RICHTER5 1Institut fur¨ Geophysik und extraterrestrische Physik, Technische Universitat¨ Braunschweig, Mendelssohnstrasse 3, D-38106 Braunschweig, Germany 2Max-Planck-Institut fur¨ Sonnensystemforschung, Lindau, Germany 3Research and Scientific Support Department, ESA/ESTEC, Noordwijk, The Netherlands 4Institut fur¨ Planetenforschung, Deutsches Zentrum fur¨ Luft- und Raumfahrt, Berlin, Germany 5Technische Universitat¨ zu Braunschweig, Germany (∗Author for correspondence: E-mail: [email protected]) (Received 16 November 2006; Accepted in final form 12 December 2006) Abstract. The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will rendezvous in 2014 with comet 67P/Churyumov- Gerasimenko close to its aphelion and will study the physical and chemical properties of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the in- teraction region of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus. On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia. Keywords: ROSETTA, solar system, comets, asteroids 1. Introduction The International ROSETTA Mission, approved in November 1993 by the Science Programme Committee of the European Space Agency (ESA), is the planetary cornerstone mission in ESA’s long-term programme Horizon 2000 (Bonnet, 1985).
    [Show full text]