The Rosetta Mission: Flying Towards the Origin of the Solar System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Matematikken Viser Vej Til Mars
S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander. -
Research Article Subsurface Thermal Modeling of Oxia Planum, Landing Site of Exomars 2022
Hindawi Advances in Astronomy Volume 2021, Article ID 9924571, 10 pages https://doi.org/10.1155/2021/9924571 Research Article Subsurface Thermal Modeling of Oxia Planum, Landing Site of ExoMars 2022 M. Formisano ,1 M. C. De Sanctis ,1 C. Federico,1 G. Magni,1 F. Altieri ,1 E. Ammannito ,2 S. De Angelis ,1 M. Ferrari ,1 and A. Frigeri 1 1INAF-IAPS, Via del Fosso del Cavaliere 100, Rome, Italy 2Italian Space Agency (ASI), Rome, Italy Correspondence should be addressed to M. Formisano; [email protected] Received 8 March 2021; Revised 18 May 2021; Accepted 25 June 2021; Published 2 September 2021 Academic Editor: Eriita Jones Copyright © 2021 M. Formisano et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. &e spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. -
How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D). -
DLR Developments and Application Ideas for Interplanetary Cubesats
DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P. -
Deep Impact As a World Observatory Event Held in Brussels, Belgium, 7–10 August 2006
Other Astronomical News Report on the Workshop on Deep Impact as a World Observatory Event held in Brussels, Belgium, 7–10 August 2006 Hans Ulrich Käufl1 One of the spectacular deconvolved images from the Christiaan Sterken2 Deep Impact Spacecraft High Resolution Imager shown in the conference (courtesy Mike A’Hearn and the Deep Impact Team). This is a colour composite of an infrared, a green and a violet filter forced to av- 1 ESO erage grey. Note the blueish areas on the surface 2 Vrije Universiteit Brussel, Belgium close to the crater-like structure. Those were entirely unexpected. It is highly interesting to find out if those structures can be correlated with the jets which were meticulously monitored from ground-based ob- In the context of NASA’s Deep Impact servers worldwide. This aspect in the picture – en- space mission, Comet 9P/Tempel1 tirely unrelated to the impact plume – illustrates very well how comet research, apart from the impact has been at the focus of an unprece- experiment, will profit from the synergy of spacecraft dented worldwide long-term multi- data and the unprecedented worldwide coordinated wavelength observation campaign. The observing campaign. comet has been studied through its perihelion passage by various spacecraft including the Deep Impact mission it- self, HST, Spitzer, Rosetta, XMM and all To make full use of the global data set, a To inspire new ideas, it was very helpful major ground-based observatories in workshop bringing together observers and interesting to have Roberta Olson basically all wavelength bands used in across the electromagnetic spectrum and from the New York Historical Society, astronomy, i.e. -
Size of Particles Ejected from an Artificial Impact Crater on Asteroid
A&A 647, A43 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039777 & © K. Wada et al. 2021 Astrophysics Size of particles ejected from an artificial impact crater on asteroid 162173 Ryugu K. Wada1, K. Ishibashi1, H. Kimura1, M. Arakawa2, H. Sawada3, K. Ogawa2,4, K. Shirai2, R. Honda5, Y. Iijima3, T. Kadono6, N. Sakatani7, Y. Mimasu3, T. Toda3, Y. Shimaki3, S. Nakazawa3, H. Hayakawa3, T. Saiki3, Y. Takagi8, H. Imamura3, C. Okamoto2, M. Hayakawa3, N. Hirata9, and H. Yano3 1 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan e-mail: [email protected] 2 Department of Planetology, Kobe University, Kobe 657-8501, Japan 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 4 JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 5 Department of Science and Technology, Kochi University, Kochi 780-8520, Japan 6 Department of Basic Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan 7 Department of Physics, Rikkyo University, Tokyo 171-8501, Japan 8 Aichi Toho University, Nagoya 465-8515, Japan 9 School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan Received 28 October 2020 / Accepted 26 January 2021 ABSTRACT A projectile accelerated by the Hayabusa2 Small Carry-on Impactor successfully produced an artificial impact crater with a final apparent diameter of 14:5 0:8 m on the surface of the near-Earth asteroid 162173 Ryugu on April 5, 2019. At the time of cratering, Deployable Camera 3 took± clear time-lapse images of the ejecta curtain, an assemblage of ejected particles forming a curtain-like structure emerging from the crater. -
CURE 2017 Internship at JPL Rosetta Mission Amateur Data Archive, Photometry of Pluto Using New Horizons Data Mary Abgarian, Los Angeles City College Dr
CURE 2017 internship at JPL Rosetta Mission Amateur Data Archive, Photometry of Pluto Using New Horizons Data Mary Abgarian, Los Angeles City College Dr. Bonnie Buratti, Jet Propulsion Laboratory Dr. Padma Yanamandra-Fisher, Space Science Institute Funded By NASA © 2017 Caltech Images: courtesy of NASA unless otherwise noted Projects • Data Archive: Obtaining and preparing amateur astronomers’ data of comet 67P for ESA’s Planetary Science Archive • Data Analysis: Analyzing New Horizons data from the Ralph Instrument (MVIC), and preparing light curves to support a larger research project involving the comparison of Pluto to Titan and Triton Spacecraft vs. Ground-Based Data Ground-Based Observing Campaign Why Ground-Based Data? • Comparison of spacecraft vs. ground-based observations • Comet activity vs Brightness • Coma trail Image Courtesy of Colin Snodgrass THE ROSETTA ORBITER (11 instruments) • Alice- Ultraviolet Imaging Spectrometer • CONSERT- Comet Nucleus Sounding Experiment by Radio wave Transmission • COSIMA- Cometary Secondary Ion Mass Analyser • GIADA- Grain Impact Analyser and Dust Accumulator • MIDAS- Micro-Imaging Dust Analysis System • MIRO- Microwave Instrument for the Rosetta Orbiter • OSIRIS- Optical, Spectroscopic, and Infrared Remote Imaging System • ROSINA- Rosetta Orbiter Spectrometer for Ion and Neutral Analysis • RPC- Rosetta Plasma Consortium • RSI- Radio Science Investigation • VIRTIS- Visible and Infrared Thermal Imaging Spectrometer Rosetta Spacecraft facts: • International mission to a comet • Launched on March -
A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering). -
The Eternal Fire of Vesta
2016 Ian McElroy All Rights Reserved THE ETERNAL FIRE OF VESTA Roman Cultural Identity and the Legitimacy of Augustus By Ian McElroy A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Arts Graduate Program in Classics Written under the direction of Dr. Serena Connolly And approved by ___________________________________________ ___________________________________________ ___________________________________________ New Brunswick, New Jersey October 2016 ABSTRACT OF THE THESIS The Eternal Fire of Vesta: Roman Cultural Identity and the Legitimacy of Augustus By Ian McElroy Thesis Director: Dr. Serena Connolly Vesta and the Vestal Virgins represented the very core of Roman cultural identity, and Augustus positioned his public image beside them to augment his political legitimacy. Through analysis of material culture, historiography, and poetry that originated during the principate of Augustus, it becomes clear that each of these sources of evidence contributes to the public image projected by the leader whom Ronald Syme considered to be the first Roman emperor. The Ara Pacis Augustae and the Res Gestae Divi Augustae embody the legacy the Emperor wished to establish, and each of these cultural works contain significant references to the Vestal Virgins. The study of history Livy undertook also emphasized the pathetic plight of Rhea Silvia as she was compelled to become a Vestal. Livy and his contemporary Dionysius of Halicarnassus explored the foundation of the Vestal Order and each writer had his own explanation about how Numa founded it. The Roman poets Virgil, Horace, Ovid, and Tibullus incorporated Vesta and the Vestals into their work in a way that offers further proof of the way Augustus insinuated himself into the fabric of Roman cultural identity by associating his public image with these honored priestesses. -
On the Trail of Comets
Issue 10 – March 2006 On the trail of comets The frontispiece to Hevelius’ great work on comets, the Cometographia (published in Danzig in 1668) showing rival theories about the origin and motion of comets. On the left Aristotle demonstrates his theory that comets are terrestrial exhalations that have ascended to the upper atmosphere. On the right Kepler suggests that comets move in straight lines. Seated in the middle Hevelius expounds his own theory that comets are expelled from the turbulent atmospheres of Jupiter and Saturn and move in curved paths. The history of the study of comets was discussed at the start of the recent RAS Discussion Meeting on Comets: From Antiquity to the Present Day. This meeting had been arranged to celebrate the tercentenary of the publication of Edmond Halley’s Synopsis of the Astronomy of Comets in 1705. A report appears inside. (Illustration courtesy of the Library of the Royal Observatory Edinburgh). Editorial Clive Davenhall Issues of the Newsletter do not King George V, recently ascended articles for publication. usually have a theme. However, to the throne following the death of Contributions are always welcome more by chance than design, two of Edward VII. The Jamaican dockers and details of how to submit them the articles in this issue are about were convinced that the change was are included on the back page, and comets. Comets have long been a portent that the new King’s reign are also on the Society’s Web site. considered harbingers of doom, would be marked by war. Since We look forward to hearing from though in Classical Antiquity they George V ruled from 1910 to 1936 you. -
MMM 265 May2013
MMM #265 Since December 1986 May 2013 – p 1 A US Defense Advanced Research Projects Agency satellite scavenging a defunct satellite’s valuable parts. DARPA has $180 M to test space debris scavenging technologies. The Canadians and Swiss are also working in this area. Feature Articles: 2 In Focus: National Space Society Perennial Identity Crisis - Peter Kokh, Member NSS Board of Advisors 3 Mars Aviation could Debut in the deep Hellas Basin - Peter Kokh 4 The "Inspiration Mars" Project - Peter Kokh 6 Making the Most of an "Inspiration Mars" Project - Peter Kokh 7 Refueling Stations Beyond Low Earth Orbit: The Stage is Set: Mining Asteroids - or Dormant Comets? - Pros & Cons - Peter Kokh “Comatose” Comets might be a better choice than Asteroids pp 7-8 For past articles, Visit http://www.moonsociety.org/publications/mmm_classics/ or /mmm_themes/ MMM #265 Since December 1986 May 2013 – p 2 About Moon Miners’ Manifesto - “The Moon - it’s not Earth, but it’s Earth’s!” • MMM’s VISION: “expanding the human economy through of-planet resources”; early heavy reliance on Lunar materials; early use of Mars system and asteroid resources; and permanent settlements supporting this economy. • MMM’s MISSION: to encourage “spin-up” entrepreneurial development of the novel technologies needed and promote the economic-environmental rationale of space and lunar settlement. • Moon Miners’ Manifesto CLASSICS: The non-time-sensitive articles and editorials of MMM’s first twenty years plus have been re-edited, reillustrated, and republished in 23 PDF format volumes, for free downloading from this location: http://www.MoonSociety.org/publications/mmm_classics/ • MMM THEME Issues: 14 collections of articles according to themes: ..../publications/mmm_themes/ • MMM Glossary: new terms, old terms/new meanings: www.moonsociety.org/publications/m3glossary.html • MMM retains its editorial independence and serves many groups, each with its own philosophy, agenda, and programs. -
New Planetary Science from Dawn, Rosetta, and New Horizons
New Planetary Science from Dawn, Rosetta, and New Horizons We have many active probes exploring deep space now. Image: The Planetary Society Three of them are giving us great new science from minor planets. ●Dawn ● NASA mission ● Asteroid Vesta and asteroid and dwarf planet Ceres ● First asteroid orbiter ● First to orbit two different deep space targets ●Rosetta ● European Space Agency mission ● Comet 67P/Churyumov–Gerasimenko ● First comet orbiter and landing ● Hopes the be the first to make two landings on a comet ●New Horizons ● NASA mission ● Dwarf planet Pluto and other Kuiper belt objects beyond ● First mission to Pluto But first, a surprise guest appearance by Messenger ●Launched August 2004 by NASA. ●March 2011 arrived at Mercury. ●April 2015 crashed into Mercury. Photo: NASA Significant Science by Messenger at Mercury ●Crashed into the planet April 30 2015. ●For earlier mission highlights, see RAC program by Brenda Conway October 2011. ●Last few orbits were as low as possible. ●Highest resolution photos ever of the surface. ●Unexpected discovery that Mercury's magnetic field grows and shrinks in response to the Sun's level of activity. Significant Science by Messenger at Mercury ●Discovered unexpected hollows on the surface. ●Younger than impact craters around them (some are in or on craters - the surface collapsed some time after the impact). ●Mercury was believed to be geologically inactive. ● First evidence there are dynamic processes on the surface of Mercury today. Photo: NASA Significant Science by Messenger at Mercury ● The last image sent by Messenger before its crash. Photo: NASA Dawn ●Launched September 2007. ●February 2009 Mars flyby and gravity assist.